检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《物理与工程》2017年第6期41-44,共4页Physics and Engineering
基 金:中央高校基本科研业务费专项资金资助(2015ZCQ-LY-02)
摘 要:本文以一维弦上微元的动能和势能为基础,推导出了一维波动方程。文章首先介绍了通过力学分析得到一维波动方程的方法。然后分析了一维自由运动粒子的动能和势能,引入系统的哈密顿量和拉格朗日函数,由最小作用原理得到了欧拉-拉格朗日方程,也就是粒子的运动方程。将这一方法用于分析一维弦上波动,给出微元的拉格朗日密度函数,得到可以描写无穷多自由度系统的欧拉-拉格朗日方程,从而导出了一维波动方程。最后分析了一维弦上波动的拉格朗日密度与弦理论中Polyakov作用量中的拉格朗日密度的关系。In this paper,the one-dimensional wave function is studied in frame of the kinetic energy and potential energy.In general,one-dimensional wave equation is obtained through the force analysis of an arbitrary string element and Newton's second law.In this paper,we introduce the Lagrangian of a particle,which moves in the potential V.Then Euler-Lagrange equation,Which is also the motion equation of particle,is given based on the principle of the least action.In the frame of this theory,we give the kinetic energy and potential energy of the string element.Then the Lagrange density function of the 1-dimension string element is defined.The Euler-Lagrange equation to describe a system with infinite degrees of freedom is obtained.Based on these,the one-dimensional wave equation is revealed.At last,we give the relations between Lagrange density function in one-dimensional wave and Lagrange density function in Polyakov interaction in string theory.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15