检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李鹏华[1,2] 刘晶晶[1,2] 冯辉宗 米怡[1,2]
机构地区:[1]重庆邮电大学自动化学院,重庆40000 [2]重庆邮电大学汽车电子与嵌入式工程研究中心,重庆40000
出 处:《重庆大学学报(自然科学版)》2018年第1期88-98,共11页Journal of Chongqing University
基 金:国家自然科学基金资助项目(61403053);重庆高校优秀成果转化项目(KJZH14207)~~
摘 要:针对采用物理建模刻画三元催化器故障演化精确性不足问题,提出一种基于尾气大数据的改进测度模糊C均值(FCM,fuzzy c-means),故障诊断方法。该方法包括分数阶傅里叶变换(FRFT,fractional fourier transform)下的故障特征提取与优化、核熵成分分析(KECA,kernel entropy component analysis)下的分形故障特征降维以及改进相似测度下的FCM故障特征聚类。首先,对不同工况的尾气数据进行FRFT处理,获取三元催化器从时域到频域的精细故障信息,同时利用粒子群算法(PSO,paticle swarm optimization)选取最优的FRFT特征,并由分形算子给出相应精细特征的分形维数;其次,借助KECA对候选的高维分形特征进行维数约简;最后,将获得的故障特征提交给改进测度的FCM故障分类器完成故障诊断。数值实验结果表明,较之采用欧式距离或余弦距离的FCM方法,研究方法的故障诊断精确度更高。The model precision of three-way catalytic converter is restricted by its complex physical and chemical reaction,which limits the accuracy of fault diagnosis based on its reaction model.To solve this problem,we propose a fault diagnosis method using improved fuzzy C-means(FCM)clustering.The method includes fault feature extraction and optimization using fractional Fourier transform(FRFT),dimensionality reduction of fractal feature using kernel entropy component analysis(KECA)and FCM fault feature clustering based on improved similarity measure.Firstly,we obtain the detailed features of different fault conditions from time domain to frequency domain using FRFT,then select the optimal FRFT order by particle swarm optimization(PSO)algorithm and these high-dimensional FRFT features with optimal order are transformed into fractal feature vectors through the fractal operator.Next,these fractal featurevectors dimensionality is reduced with KECA.At last,the reduced feature vectors are submitted to the improved FCM for fault clustering analysis.Numerical experiment results show that compared with the FCM method of Euclidean distance or cosine distance,the proposed method could obtain better fault identification result.
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15