检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山西大学计算机与信息技术学院,山西太原030006 [2]山西大学大数据科学与产业研究院,山西太原030006 [3]中国科学院广州地球化学研究所,广东广州510640 [4]中国科学院大学,北京100049 [5]中国科学院广州电子技术研究所,广东广州510070
出 处:《电子学报》2018年第2期333-340,共8页Acta Electronica Sinica
基 金:中国科学院西部之光基金(No.2011180)
摘 要:为了对分数阶超混沌系统中的未知参数进行准确估计,提出一种量子混沌粒子群优化算法(Quantum chaos particle swarm optimization,QCPSO).该算法通过对量子粒子群优化算法(Quantum behaved particle swarm optimization,QPSO)的实现机理进行分析,并结合量子纠缠与混沌系统之间的相关性而实现.首先,将量子势阱中心视为混沌吸引子围绕的不动点,处于吸引子外部的粒子会逐渐聚集于吸引子之内,而处于吸引子内部的粒子会出现快速分离扩散的现象;然后,采用基于随机映射的粒子更新机制,充分保证混沌粒子的初值多样性;最后,提出了基于不动点中心的尺度自适应策略,解决了算法后期的搜索停滞问题.运用QCPSO算法对典型分数阶超混沌系统参数进行估计,结果表明,该算法在收敛速度与精度上优于改进的差分进化算法、自适应人工蜂群算法以及改进的量子粒子群优化算法.A new quantum chaos particle swarm optimization (QCPSO) was proposed to accurately estimate the un- certain parameters of the fractional order hyper chaotic system. The QCPSO algorithm was realized by analyzing the mecha- nism of quantum behaved particle swarm optimization ( QPSO ) and combining the correlation between quantum entangle- ment and chaotic system. Firstly, the center of potential well was replaced by a fixed point of chaotic attractor. The particles which outside the attractor were gradually converged to the attractor, and the particles which inside the attractor were quickly diffused. Secondly, in order to guarantee the diversity of the initial value of the chaotic particles, the particle update mechanism based on random mapping was proposed. Finally, a scale adaptive strategy was proposed to solve the problem of search stagnation of the algorithm. The parameters of fractional order hyper chaotic system were estimated by the QCPSO algo- rithm, and the results showed that the QCPSO algorithm has faster convergence speed and higher accuracy than improved differential evolution algorithm, adaptive artificial bee colony algorithm and improved QPSO algorithm.
关 键 词:量子粒子群优化算法 混沌映射 混沌吸引子 分数阶超混沌系统
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151