面向个性化站点的用户检索意图建模方法  被引量:1

Novel retrieval intention modeling method for personalized website

在线阅读下载全文

作  者:张瑞芳 郭克华[1,2] 

机构地区:[1]中南大学信息科学与工程学院,长沙410083 [2]南京理工大学高维信息智能感知与系统教育部重点实验室,南京210094

出  处:《计算机工程与应用》2018年第6期37-43,共7页Computer Engineering and Applications

基  金:国家自然科学基金(No.61672535);高维信息智能感知与系统教育部重点实验室创新基金(No.JYB201502);湖南省普通高校青年教师培养计划;中南大学中央高校基本科研业务费专项(No.2016zzts351);中南大学创新驱动计划(No.2015CXS010);中南大学升华育英计划专项

摘  要:针对个性化站点较少考虑用户检索意图的问题,提出结合交叉信息熵和词语特征信息的关键词提取方法以及结合余弦相似度和加权海明距离的文本排序方法,旨在不需要用户任何反馈的条件下,为用户推荐更满意的检索结果。通过过滤用户请求个性化站点时的访问地址,获取用户浏览的网页文本内容,从中提取能够表示用户检索意图的关键词集进行重新检索后对检索结果排序,最后将排序后的结果作为推荐模块返回给用户。实验表明,利用该方法获得的查询推荐结果能够更加符合用户检索意图,提供更好的用户体验。Personalized website rarely considers user's search intention in retrieval process. To recommend more satisfactory results without any user feedback in personalized website retrieval, this paper proposes a keyword extraction method combining the cross entropy with word feature information, and a text ranking method assembling the cosine similarity with weighted Hamming distance. Firstly, web page text content is obtained from the requested personalized website by filtering the web page address. Secondly, based on the obtained text content, keywords which can reflect user's retrieval intention are extracted. Thirdly, user's intention vector model is constructed and a re-retrieval process is performed by calling the main search engine. Finally, the similarity between the user's intention model and the re-retrieved records is computed, and the results sorted by the similarity values are returned to user. Experimental results show that the proposed method can reflect the user's query intention and provide a notably convenient user experience.

关 键 词:个性化站点 用户意图 查询推荐 信息检索 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象