检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽大学计算机科学与技术学院,合肥230601
出 处:《计算机工程与应用》2018年第6期183-187,233,共6页Computer Engineering and Applications
基 金:国家自然科学基金(No.61300057;No.61402002);国家高技术研究发展计划(863)子项目(No.2014AA0154104);安徽省自然科学基金(No.1408085QF120;No.1408085MKL94);教育部留学回国启动资金(教外司留[2014]1685号)
摘 要:核磁共振图像(Magnetic Resonance Imaging)容易受到噪声的干扰,并且在图像边缘部分呈弱对比度。强噪声下核磁共振图像的脑组织分割一直是个难题,引起很多学者的关注。提出了一种使用自适应正则化参数并结合空间关系的算法,同时将核距离替换传统的欧式距离进行计算,对强噪声下的核磁共振图像进行分割,大大提高了分割的鲁棒性。算法的主要优点是为图像每个点定义自适应参数,并且将这个参数同时应用到目标函数的两项表达式当中,既减少了参数数量,又增强了分割效果。最后,由于结合空间关系,使分割结果更加的精确。实验表明,该方法在脑组织的分割精度、细节保留以及噪声处理方面比其他方法有所提高。MRI(Magnetic Resonance Imaging)is easily affected by noise, and it has poor contrast along boundaries.MRI of brain tissue segmentation under the strong noise has always been a difficult problem, and it has attracted much attention. This paper puts forward a kind of algorithm using adaptive regularization parameters combined with spatial relation, which replaces the Euclidean distance by the Kernel distance for calculation, and segments the MR image under the strong noise, the robustness of segmentation is greatly improved. The main advantage is to define adaptive parameters for each point, and puts the parameters into two expressions of the objective function. And it not only reduces the number of parameters, but also enhances the segment result. Finally, combined with spatial relation, the segmentation is more accurate. The experiments show the proposed method improves the segmentation accuracy, detail retention and noise processing in brain.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117