低层特征与高层语义融合的人体行为识别方法  被引量:3

Human Activity Recognition Method Based on Low-lever Feature and High-lever Semantic

在线阅读下载全文

作  者:王忠民 周肖肖 王文浪 WANG Zhong-min, ZHOU Xiao-xiao, WANG Wen-lang(School of Computer Science & Technology ,Xi'an University of Posts & Telecommunications, Xi'an 710121 ,Chin)

机构地区:[1]西安邮电大学计算机学院,西安710121

出  处:《小型微型计算机系统》2018年第4期694-699,共6页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(61373116)资助;陕西省科技统筹创新工程计划项目(2016KTZDGY04-01)资助;西安邮电大学研究生创新基金项目(103-602080003)资助

摘  要:针对现有跌倒检测中跌倒样本采集困难,跌倒行为样本规模较少导致的识别率较差的问题,提出一种基于低层特征与高层语义的人体行为识别方法.该方法引入语义属性特征以便在某些行为样本较少的情况下能够共享行为之间的低层特征信息,通过构建属性-行为矩阵,利用低层特征信息训练语义属性检测器,得到语义属性特征,对属性特征与低层特征分别进行预分类,融合两种特征的预分类结果得到最终判决的人体行为类别.实验结果表明,与过采样算法、欠采样算法和最小二乘支持向量机相比,本文所提方法获得了更好的分类结果.In order to solve the poor recognition performance of current fall detection caused by fall samples collected with difficulty and small size of fall samples in database,a human activity recognition method based on the low-level features and high-lever semantic was proposed.The semantic attributes between the low-features and the categories were introduced,which could be used to share the feature information of activities in the case of the activity had few samples.The attribute detectors were trained by the attribute-activity matrix and the low-features,and thus the attribute features were obtained.Then,the random forest algorithm was applied to recognize the attribute features and low-level features.Finally,the final result obtained by fusing the two modal pre-recognition results.The experimental results show that the proposed method has better classification performance compared with other methods.

关 键 词:小样本数据 低层特征 高层语义 特征融合 人体行为识别 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象