检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖君超 曾卫明[1] 杨嘉君[2] 石玉虎[1] 徐艳红[2] 焦磊[3] XIAO Jun-Chao1, ZENG Wei-Ming1, YANG Jia-Jun2, SHI Yu-Hu1, XU Yan-Hong2, JIAO Lei3 1(College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China) 2(Department of Neurology, the Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 201306, China) 3(Department of Radiology, the Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 201306, China)
机构地区:[1]上海海事大学信息工程学院,上海201306 [2]上海交通大学附属第六人民医院神经内科,上海201306 [3]上海交通大学附属第六人民医院放射科,上海201306
出 处:《计算机系统应用》2018年第4期249-253,共5页Computer Systems & Applications
基 金:国家自然科学基金(31470954);上海市2014年度浦东新区科技发展基金创新资金(医疗卫生)项目(PKJ2014-Y08)
摘 要:偏头痛作为一种常见的疾病,发病概率高,致病机理尚不明确,并且临床缺乏有效的诊断手段.运用功能核磁共振成像技术获取被试脑功能数据,然后通过深度学习中自动编码器,自动提取数据特征,并结合各种机器学习算法,预测偏头痛,为临床诊断提供参考依据.用深度学习提取数据特征,训练分类器,能达到更好的分类效果.深度学习算法可以在传统模板获取初步特征之后,进一步提取更加精细有效的特征,在预测偏头痛上获得更好的分类性能.The migraine is a common disease with high incidence. It is still not easy to explain its pathogenesis very well. Therefore, it lacks effective diagnostic methods. This study aims to predict migraine by using the functional magnetic resonance imaging technology to obtain functional network of brain, then through deep learning of automatically it extracts data features by Autoencoder, combined with various machine learning algorithms to provide a reference for clinical diagnosis of physicians. It can get better classification effect to extract data features and train the classifier by deep learning. The deep learning algorithm, based on the initial features obtained by the traditional templates, can further extract more fine and effective features, and obtain better classification performance in predicting migraine.
关 键 词:偏头痛 深度学习 功能磁共振 神经影像 自动编码器
分 类 号:R747.2[医药卫生—神经病学与精神病学] TP181[医药卫生—临床医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3