基于有限辛空间的一致偏序集和Leonard对  被引量:2

Uniform Posets and Leonard Pairs Based on Symplectic Spaces over Finite Fields

在线阅读下载全文

作  者:高锁刚[1] 薛慧娟 侯波[1] GAO Suogang;XUE Huijuan;HOU Bo(College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China;College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China)

机构地区:[1]河北师范大学数学与信息科学学院,石家庄050024

出  处:《数学年刊(A辑)》2018年第1期95-112,共18页Chinese Annals of Mathematics

基  金:国家自然科学基金(No.11471097);河北省自然科学基金(No.A2017403010)的资助

摘  要:设F_q为q个元素的有限域,q是一个素数的幂.令F_q^((2v))是F_q上的2v维辛空间,M(m,s;2v)表示辛群作用在F_q^((2v))上的子空间的轨道.L(m,s;2v)是M(m,s;2v)的子空间生成的集合.若按照子空间的包含关系来规定L(m,s;2v)的序,则得一偏序集,记为L_O(m,s;2v).本文,首先构造了L(m,s;2v)上的子偏序集L_O(m,s;2v),然后证明这个子偏序集是强一致偏序的.最后利用这个偏序集构造了Leonard对.Let Fq^(2v) be the 2 v-dimensional symplectic space over the finite field Fq, and let M(m, s; 2 v) denote the orbit of subspaces of Fq^(2v) under the symplectic group. Denote by L(m,s;2 v) the set of subspaces generated by M(m,s;2 v). By ordering L(m,s;2 v) by ordinary inclusion, the poset denoted LO(m,s;2 v) is obtained. In this paper, the authors first construct the subposet of LO(m, s; 2 v). Then it is shown that this subposet is strongly uniform and construct Leonard pairs from it.

关 键 词:有限域 辛空间 一致偏序集 Leonard对 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象