检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王正[1] 王金申[2] 刘志[3] 季凯 刘义庆[3] 金讯波[1] WANG Zheng;WANG Jin - shen;LIU Zhi;JI Kai;LIU Yi - qing;JIN Xun - bo(Minimally Invasive Urology Center,Provincial Hospital Affiliated to Shandong University,Jinan,Shandong,250014,China;Department of GastrointestinalSurgery,Shandong Provincial Hospital Affiliated to Shandong University,Jinan,Shandong,250014,China;Department of clinical laboratory,ShandongProvincial Hospital Affiliated to Shandong University,Jinan,Shandong,250014,China;Shandong Helix Matrix Technology Co. , Ltd,Jinan,Shandong,250014,China)
机构地区:[1]山东大学附属省立医院泌尿微创中心,山东济南250014 [2]山东大学附属省立医院胃肠外科,山东济南250014 [3]山东大学附属省立医院检验科,山东济南250014 [4]山东螺旋矩阵数据技术有限公司,山东济南250014
出 处:《泌尿外科杂志(电子版)》2017年第4期9-14,共6页Journal of Urology for Clinicians(Electronic Version)
基 金:山东省重点研发计划(No.2017G006007)基金支持
摘 要:目的探索应用人工智能机器学习算法单纯基于肝、肾功等血液学检查来辅助筛查泌尿系统肿瘤。方法分别利用支持向量机和神经网络算法对3136例正常人员和泌尿系统恶性肿瘤患者肝肾功数据进行分析,找到肝肾功数据与泌尿系统恶性肿瘤的相关性。结果对于泌尿系统恶性肿瘤通过5次交叉验证的最优平均分类准确率达到了92.05%,支持向量机与神经网络算法结果基本一致。结论机器学习算法可以单纯通过肝、肾功等血液学检测分类正常人和泌尿系统恶性肿瘤患者,表明该方法有望成为一种泌尿系统肿瘤辅助筛查手段。Objective To explore a new assist method in the diagnosis of urological carcinoma based on routine hematological examination by deep learning. Method The support vector machine ( SVM)and artificial neural network( ANN)were applied to distinguish the urological carcinoma by analyzing the data of routine hemato logical examination from 3163 patients including normal persons and urological carcinoma cases. Results The average accuracy rate of deep learning method through 5 cross validation was 92. 05% for urological urological carcinoma cases. The accuracy was no significant differences between SVM and ANN. Conclusions There is probability to classify normal and urological carcinoma patients by using deep learning method on the routine hematological examination.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.85