反对称线性变换与Gram-Schmidt正交化  被引量:1

Anti-symmetrical Linear Change and Gram-Schmidt Orthogonalization Process

在线阅读下载全文

作  者:刘妍珺[1] 马赞甫[2] 余孝军[1] LIU Yan-jun;MA Zan-fu;YU Xiao-jun(School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025 China;Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance and Economics Guiyang 550025, China)

机构地区:[1]贵州财经大学数学与统计学院,贵州贵阳550025 [2]贵州财经大学贵州省经济系统仿真重点实验室,贵州贵阳550025

出  处:《数学的实践与认识》2018年第9期285-289,共5页Mathematics in Practice and Theory

基  金:教育部人文社会科学基金项目(12YJC790140);国家留学基金委西部项目(201608525051);国家自然科学基金(71761005)*通信作者

摘  要:利用反对称矩阵可实施反对称变换,将任意非零向量转变为与之正交的向量.基于这一考虑,可对给定向量组实施反对称线性变换,将其转化为一个与之等价的正交向量组.该种线性变换从另一角度解释了Gram—Schmidt正交化.The anti-symmetric variation can be implemented by using the antisymmetric matrix, and any nonzero vector is transformed into a vector that is orthogonal to it. Based on this consideration, an anti-symmetric change is applied to a given vector group, and an equivalent orthogonal vector group is obtained. The anti-symmetrical linear change explains the Gram-Schmidt orthogonalization from another perspective.

关 键 词:反对称矩阵 反对称变换 Gram-Schmidt正交化 

分 类 号:O151.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象