检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘妍珺[1] 马赞甫[2] 余孝军[1] LIU Yan-jun;MA Zan-fu;YU Xiao-jun(School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025 China;Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance and Economics Guiyang 550025, China)
机构地区:[1]贵州财经大学数学与统计学院,贵州贵阳550025 [2]贵州财经大学贵州省经济系统仿真重点实验室,贵州贵阳550025
出 处:《数学的实践与认识》2018年第9期285-289,共5页Mathematics in Practice and Theory
基 金:教育部人文社会科学基金项目(12YJC790140);国家留学基金委西部项目(201608525051);国家自然科学基金(71761005)*通信作者
摘 要:利用反对称矩阵可实施反对称变换,将任意非零向量转变为与之正交的向量.基于这一考虑,可对给定向量组实施反对称线性变换,将其转化为一个与之等价的正交向量组.该种线性变换从另一角度解释了Gram—Schmidt正交化.The anti-symmetric variation can be implemented by using the antisymmetric matrix, and any nonzero vector is transformed into a vector that is orthogonal to it. Based on this consideration, an anti-symmetric change is applied to a given vector group, and an equivalent orthogonal vector group is obtained. The anti-symmetrical linear change explains the Gram-Schmidt orthogonalization from another perspective.
关 键 词:反对称矩阵 反对称变换 Gram-Schmidt正交化
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.153