基于SIFT的车标识别算法  被引量:4

Vehicle Logo Recognition Algorithm Based on SIFT

在线阅读下载全文

作  者:耿庆田[1,2] 于繁华[1] 王宇婷 赵宏伟[2] 赵东[1] GENG Qingtian;YU Fanhua;WANG Yuting;ZHAO Hongwei;ZHAO Dong(College of Cornpucer Science and Technology, Changchun Normal Universicy, Changchun 130032, China;College of Computer Science and Technology, Jilin University, Changchun 130012, China)

机构地区:[1]长春师范大学计算机科学与技术学院,长春130032 [2]吉林大学计算机科学与技术学院,长春130012

出  处:《吉林大学学报(理学版)》2018年第3期639-644,共6页Journal of Jilin University:Science Edition

基  金:吉林省产业创新专项基金(批准号:2016C078);吉林省产业技术研究与开发专项基金(批准号:2017C031-2);吉林省教育厅"十三五"科学技术研究项目(批准号:2018269)

摘  要:针对车标识别过程中匹配阈值难、识别速度慢的问题,提出一种基于尺度不变特征变换(SIFT)的特征匹配车标识别算法.利用SIFT算子对图像的视角、平移、放射、亮度、旋转等不变特性进行提取,并采用BP神经网络算法自主选取车标图像特征进行分类、匹配和识别.仿真实验结果表明,简单车标和复杂车标的识别率平均值均达90%以上,该算法识别速度较快、识别率较高,能满足实际应用的需要.Aiming at the problems that the matching threshold was difficult and the recognition speed was slow in the process of vehicle-logo recognition,we proposed a vehicle-logo recognition algorithm based on feature matching of scale invariant feature transformation(SIFT).The SIFT operator was used to extract the invariant features of the image,such as viewing angle,translation,radiation,brightness and rotation,and the BP neural network algorithm was used to autonomously select vehicle-logo image features for classification,matching and recognition.The results of simulation experiment show that the mean values of recognition rate for simple vehicle-logos and complex vehicle-logos are all more than 90%,the algorithm has faster recognition speed and higher recognition rate,which can meet the needs of practical application.

关 键 词:车标识别 尺度不变特征变换 特征匹配 BP神经网络 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象