Drosophila, destroying angels, and deathcaps! Oh my! A review of mycotoxin tolerance in the genus Drosophila  

Drosophila, destroying angels, and deathcaps! Oh my! A review of mycotoxin tolerance in the genus Drosophila

在线阅读下载全文

作  者:Clare H. Scott Chialvo Thomas Werner 

机构地区:[1]Department of Biologtcal Sciences, University of Alabama, Tuscaloosa, Alabama, USA [2]Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA

出  处:《Frontiers in Biology》2018年第2期91-102,共12页生物学前沿(英文版)

摘  要:BACKGROUND: Evolutionary novelties, be they morphological or biochemical, fascinate both scientists and non-scientists alike. These types of adaptations can significantly impact the biodiversity of the organisms in which they occur. While much work has been invested in the evolution of novel morphological traits, substantially less is known about the evolution of biochemical adaptations. METHODS: In this review, we present the results of literature searches relating to one such biochemical adaptation: α- amanitin tolerance/resistance in the genus Drosophila. RESULTS: Amatoxins, including α-amanitin, are one of several toxin classes found in Amanita mushrooms. They act by binding to RNA polymerase Ⅱ and inhibiting RNA transcription. Although these toxins are lethal to most eukaryotic organisms, 17 mushroom-feeding Drosophila species are tolerant of natural concentrations of amatoxins and can develop in toxic mushrooms. The use of toxic mushrooms allows these species to avoid infection by parasitic nematodes and lowers competition. Their amatoxin tolerance is not due to mutations that would inhibit α-amanitin from binding to RNA polymerase Ⅱ. Furthermore, the mushroom-feeding flies are able to detoxify the other toxin classes that occur in their mushroom hosts. In addition, resistance has evolved independently in several D. melanogaster strains. Only one of the strains exhibits resistance due to mutations in the target of the toxin. CONCLUSIONS: Given our current understanding of the evolutionary relationships among the mushroom-feeding flies, it appears that amatoxin tolerance evolved multiple times. Furthermore, independent lines of evidence suggest that multiple mechanisms confer α-amanitin tolerance/resistance in Drosophila.BACKGROUND: Evolutionary novelties, be they morphological or biochemical, fascinate both scientists and non-scientists alike. These types of adaptations can significantly impact the biodiversity of the organisms in which they occur. While much work has been invested in the evolution of novel morphological traits, substantially less is known about the evolution of biochemical adaptations. METHODS: In this review, we present the results of literature searches relating to one such biochemical adaptation: α- amanitin tolerance/resistance in the genus Drosophila. RESULTS: Amatoxins, including α-amanitin, are one of several toxin classes found in Amanita mushrooms. They act by binding to RNA polymerase Ⅱ and inhibiting RNA transcription. Although these toxins are lethal to most eukaryotic organisms, 17 mushroom-feeding Drosophila species are tolerant of natural concentrations of amatoxins and can develop in toxic mushrooms. The use of toxic mushrooms allows these species to avoid infection by parasitic nematodes and lowers competition. Their amatoxin tolerance is not due to mutations that would inhibit α-amanitin from binding to RNA polymerase Ⅱ. Furthermore, the mushroom-feeding flies are able to detoxify the other toxin classes that occur in their mushroom hosts. In addition, resistance has evolved independently in several D. melanogaster strains. Only one of the strains exhibits resistance due to mutations in the target of the toxin. CONCLUSIONS: Given our current understanding of the evolutionary relationships among the mushroom-feeding flies, it appears that amatoxin tolerance evolved multiple times. Furthermore, independent lines of evidence suggest that multiple mechanisms confer α-amanitin tolerance/resistance in Drosophila.

关 键 词:DROSOPHILA mushroom-feeding biochemical adaptations mushroom toxins CYCLOPEPTIDES α-amanitin 

分 类 号:Q969.462.2[生物学—昆虫学] S852.651[农业科学—基础兽医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象