检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘畅[1] 杨锁昌[1] 汪连栋 张宽桥 LIU Chang;YANG Suochang;WANG Liandong;ZHANG Kuanqiao(Department of Missile Engineering, Ordnance Engineering College, Shijiazhuang 050000, China;State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang 471003, China)
机构地区:[1]军械工程学院导弹工程系,石家庄050000 [2]电子信息系统复杂电磁环境效应国家重点实验室,洛阳471003
出 处:《北京航空航天大学学报》2018年第5期982-990,共9页Journal of Beijing University of Aeronautics and Astronautics
摘 要:针对容积积分卡尔曼滤波(CQKF)受模型不确定性影响较大及需要精确已知噪声统计特性的缺点,提出了一种自适应强跟踪CQKF算法。该算法根据强跟踪滤波原理,引入渐消因子调整状态预测协方差矩阵,强迫残差序列正交,有效抑制了模型不确定性引起的滤波发散。在滤波过程中,利用Sage-Husa时变噪声统计估值器对过程噪声及量测噪声实时估计,提高了算法在未知时变噪声环境下的滤波精度。目标跟踪仿真实验验证了算法的有效性和鲁棒性。As cubature quadrature Kalman filter(CQKF) is easily influenced by uncertainty of statespace model and need to know exactly noise statistics,a new type of adaptive CQKF algorithm with strong tracking behavior is proposed. Based on the theory of strong tracking filter,the new algorithm introduces fading factor to adapt to covariance matrix and reinforces residual sequence to be orthogonal,which effectively suppresses the filtering divergence caused by the model uncertainty. In the process of filtering,processing noise and measurement noise should be estimated online by the Sage-Husa noise statistics estimator,which will improve the filter precision under the circumstance of unknown time-varying noise. Simulations of target tracking demonstrate the efficiency and robustness of the algorithm.
关 键 词:目标跟踪 容积积分卡尔曼滤波(CQKF) 强跟踪滤波 噪声统计估值器 自适应滤波
分 类 号:TN953[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.25