检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙艳楠 李炳照 陶然[3] Sun Yannan;Li Bingzhao;Tao Ran(School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China;Beijing Key Laboratory on MCAACI, Beijing 100081, China;School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)
机构地区:[1]北京理工大学数学与统计学院,北京100081 [2]复杂信息数学表征分析与应用北京市重点实验室,北京100081 [3]北京理工大学信息与电子学院,北京100081
出 处:《光电工程》2018年第6期25-45,共21页Opto-Electronic Engineering
基 金:国家自然科学基金资助项目(61671063);国家自然科学基金创新研究群体基金资助项目(61421001)~~
摘 要:线性正则变换(LCT)是Fourier变换和分数阶Fourier变换的广义形式。近年来研究成果表明,LCT在光学、信号处理及应用数学等领域有广泛的应用,而离散化成为了其得以应用的关键。由于LCT的离散算法不能简单直接地将时域变量和LCT域变量离散化得到,因此LCT的离散算法成为近年来的研究重点。本文依据LCT的离散化发展历史,对其重要研究进展和现状进行了系统归纳和简要评述,并给出不同离散化算法之间的区别和联系,指明了未来发展方向。这对研究者全面了解LCT离散化方法具有很好的参考价值,可以进一步促进其工程应用。Linear canonical transformation(LCT) is a generalization of the Fourier transform and fractional Fourier transform. The recent studies have shown that LCT is widely used in optics, signal processing and applied mathematics, and the discretization of the LCT becomes vital for the applications of LCT. Since the discretization of LCT cannot be obtained by directly sampling in time domain and LCT domain, the discretization of the LCT becomes the focus of investigation recently. Based on the development history of LCT discretization, a review of important research progress and current situation of discretization of the LCT is presented in this paper. Meanwhile, the connection among different discretization algorithms and the future development direction are given. It is of great reference value for researchers to fully understand the LCT discretization method and can further promote its engineering applications.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222