检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张静 杨大伟 毛琳 ZHANG Jing, YANG Da-wei, MAO Lin(School of Electromechanical Engineering, Dalian Minzu University, Dalian Liaoning 116605, Chin)
机构地区:[1]大连民族大学机电工程学院,辽宁大连116605
出 处:《大连民族大学学报》2018年第3期213-217,共5页Journal of Dalian Minzu University
基 金:国家自然科学基金资助项目(61673084);辽宁省自然科学基金资助项目(20170540192)
摘 要:针对现有HOG特征行人检测器容易受到复杂背景环境的干扰而降低检测效率的问题,提出一种基于图像的递归式行人错检校验算法。在保持行人检测器原有结构不变的基础上,对行人检测器的检测结果进行图像变换,变换结果作为新的输入图像,将原有检测器构成一个递归式错检校验处理结构。采用尺寸归一化、均衡和锐化图像变换方法,对行人检测器检测结果不断迭代校验,以达到降低错检率的目的。同时引入模糊决策判决终止条件,实现合理的迭代退出。经INRIA数据集和实测图片的仿真分析表明,该方法能够有效去除行人检测器输出的错误检测结果,正确检测率在原有基础上提高7.6%,在复杂背景条件下仍有效。Due to the interference of complex environmental background,the efficiency of pedestrian detectors using HOG features has declined. To solve this problem,we propose a recursive false positive check algorithm for pedestrian detection based on image transformation. This algorithm makes the pedestrian detector become a recursive false positive check structure,through maintaining the construction of original pedestrian detector and utilizing the detection result as input image of pedestrian detector after image transformation. In order to reduce the false detection rate,image transformation methods such as size normalization,equalization and sharpening are adopted to check the results of pedestrian detector recursively. And fuzzy decision termination condition is introduced to achieve reasonable exit from iteration. The simulation results on INRIA and other collected datasets show that the method can remove the false detection results of the pedestrian detector and the correct detection rate is increased by 7. 6% compared with the original detection,which demonstrates the effectiveness of this method in the complex background conditions.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7