检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张仕霞 金聪[1] Zhang Shixia;Jin Cong(School of Computer, Central China Normal University, Wuhan 430079, Chin)
机构地区:[1]华中师范大学计算机学院
出 处:《电子测量技术》2018年第8期128-134,共7页Electronic Measurement Technology
基 金:国家社会科学基金(13BTQ050)项目资助
摘 要:基于L1范数的二维最大间距准则算法直接求解十分复杂,即使采用贪心算法将原问题简化,求解方法的复杂度仍然很高,而且不能得到全局最优解。针对此问题提出了新的求解方法,将粒子群优化算法与基于L1范数的二维最大间距准则算法有效的结合,利用粒子群算法优化降维的投影矩阵,同时利用L1范数的二维最大间距准则构造粒子群的适应度函数,使算法能够得到全局最优解,提高人脸识别的精度。改进算法在ORL、Yale以及加噪数据集上的实验验证了该算法的有效性。The solution of the two-dimensional maximum spacing criterion algorithm based on L1 norm is very complicated.Even if the greedy algorithm is used to simplify the original problem,the complexity of the solution is still high and it can not be obtain the global optimal solution.In this paper,a new method is proposed to solve this problem.Since the particle swarm optimization algorithm can obtain the global optimal solution,this paper effectively combines the particle swarm optimization algorithm with the two-dimensional maximum spacing criterion algorithm based on L1 norm,The optimal algorithm is used to find the optimal projection matrix,which makes the algorithm get the global optimal solution and improve the efficiency of face recognition.The idea of this paper verifies the effectiveness of the algorithm in experiments with ORL and Yale and the noisy data set.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.164.253