基于MPCA-LSSVM的生产制造过程异常监控模型  被引量:5

在线阅读下载全文

作  者:刘玉敏[1] 张帅[1] 

机构地区:[1]郑州大学商学院

出  处:《统计与决策》2018年第13期81-84,共4页Statistics & Decision

基  金:国家自然科学基金资助项目(71672182;71272207;61271146)

摘  要:针对PCA方法在生产过程质量异常监控中存在阈值设置过于主观、特征提取效果不高等问题,文章提出一种将多主元分析方法(MPCA)与最小二乘支持向量机算法(LSSVM)相结合的生产制造过程质量异常模式智能监控模型。首先,利用不同阈值设置方法对观测数据进行PCA特征提取。其次,将不同的主元特征作为LSSVM分类器的输入对监控模型进行训练。然后,将识别效率最高的主元特征对应的模型参数与MSVM相结合,构建出基于MPCA-LSSVM的监控模型对生产过程的质量异常模式进行识别。仿真实验表明,基于MP-CA-LSSVM识别模型的识别精度比基于传统的主元分析方法以及其他特征提取方法的监控模型有显著提高。

关 键 词:多主元分析 最小二乘支持向量机 质量异常模式 过程监控 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象