检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭峰[1] 殷鸣[1] 彭骥[1] 卫亚斌 殷国富[1] TAN Feng;YIN Ming;PENG Ji;WEI Yabin;YIN Guo fu(School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China)
机构地区:[1]四川大学制造科学与工程学院,四川成都610065
出 处:《计算机集成制造系统》2018年第6期1383-1390,共8页Computer Integrated Manufacturing Systems
基 金:国家科技重大专项课题资助项目(2017ZX04020001-005);四川省科技支撑计划资助项目(2018GZ0109)~~
摘 要:为了解决单一BP神经网络模型预测性能不稳定的问题,提出一种集成BP神经网络的数控机床主轴热误差建模方法。采用模糊c均值聚类法筛选温度敏感点,消除了冗余温度变量间的多重共线性。从机器学习的角度出发,分别采用平均法、中位数法和普通最小二乘法将几种具有弱预测性能的典型BP神经网络模型进行集成。以THM6380卧式加工中心为研究对象进行了主轴热误差实验,热误差预测性能分析结果表明,集成模型的预测精度和泛化能力优于单一BP神经网络模型,为机床主轴热误差建模及后续热误差补偿提供了新的思路。To solve the problem of instable prediction of single BP neural network model,a thermal error modeling method for CNC machine tool spindle based on ensemble BP neural network was proposed.The Fuzzy c-means Clustering Method(FCM)was adopted to select the temperature sensitive points,which eliminated the multi-collinearity between redundant temperature variables.From the perspective of machine learning,several typical BP neural network models with weak prediction performance were integrated by average method,median method and ordinary least squares method respectively.By taking a horizontal machining center THM6380 as an example,the thermal experiment was carried out.The analysis results of thermal error prediction performance indicated that the prediction accuracy and generalization ability of the ensemble models were better than that of single BP neural network model.The proposed modeling method provided a new idea for the thermal error modeling and subsequent thermal error compensation of machine tool spindle.
关 键 词:主轴热误差 BP神经网络 模糊C均值聚类 普通最小二乘法 集成模型
分 类 号:TH16[机械工程—机械制造及自动化] TG659[金属学及工艺—金属切削加工及机床]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222