基于轨迹信息熵分布的异常轨迹检测方法  被引量:11

Trajectory outlier detection based on trajectory information entropy distribution

在线阅读下载全文

作  者:蒋华 郑依龙 王鑫 Jiang Hua;Zheng Yilong;Wang Xin(School of Computer & Information Security,Guilin University of Electronic Technology,Guilin Guangxi 541004,China)

机构地区:[1]桂林电子科技大学计算机与信息安全学院,广西桂林541004

出  处:《计算机应用研究》2018年第6期1655-1659,共5页Application Research of Computers

基  金:2016广西高校中青年教师基础能力提升项目(ky2016YB150)

摘  要:针对异常轨迹检测多特征检测和检测单元造成的检测效率低等问题,提出一种基于轨迹信息熵分布的异常轨迹检测方法。该方法根据轨迹偏转角与速度将轨迹分割成若干轨迹段,计算轨迹段间加权多特征距离判断轨迹间相似度,进而完成轨迹聚类并计算出每类代表性轨迹,然后对待检测轨迹进行分割,利用代表性轨迹计算每个轨迹段的信息熵,通过比较轨迹信息熵大小及其分布特点实现异常轨迹检测。大西洋飓风数据仿真实验结果表明,该方法提高了聚类效果,克服以整条轨迹检测效率低的缺点,提升了异常轨迹检测算法的有效性。In view of fact that the detection efficiency of the multi-feature detection and detection unit for trajectory outlier is inefficient,this paper proposed a new method named TOD-TIED( trajectory outlier detection based on trajectory information entropy distribution). Firstly,the algorithm partitioned a trajectory into a set of trajectory segments according to corner and velocity,then calculated the weighted multi-feature distance to determine the similarity between trajectory segments. Finally,it grouped trajectories into clusters and calculated representative trajectory. The algorithm partitioned the trajectory into a set of trajectory segments,then calculated the information entropy of each trajectory by using the representative trajectory,finally it detected the abnormal trajectory detection according to the trajectory information entropy and its distribution characteristic. The simulation results of Atlantic hurricane data show that this method can improve the clustering effect and overcome the shortcomings of inefficient detection with the whole trajectory,and improves the effectiveness of the outlier trajectory detection algorithm.

关 键 词:信息熵 相似度 轨迹聚类 代表性轨迹 异常检测 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象