检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韦皓瀚 曹国[1] 尚岩峰[2] 孙权森[1] 王必胜[1] Wei Haohan1 , Cao Guo1 , Shang Yanfeng2 , Sun Quansen1 , Wang Bisheng1(1. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China;2. The Third Research Institute of Ministry of Public Security, Shanghai, 201204, Chin)
机构地区:[1]南京理工大学计算机科学与工程学院,南京210094 [2]公安部第三研究所,上海201204
出 处:《数据采集与处理》2018年第3期521-529,共9页Journal of Data Acquisition and Processing
基 金:国家自然科学基金(61471365;61231017;61571442)资助项目;中国民航大学中央高校基金(3122015D003)资助项目
摘 要:行人检测是计算机视觉和模式识别领域的研究热点与难点,针对聚合通道特征(Aggregate channel feature,ACF)算法应用于行人检测时,出现检测精度较低、平均对数漏检率(Log-average miss rate,LAMR)较高的情况,提出一种改进的ACF行人检测算法。首先结合objectness方法对ACF算法低得分区域进行进一步验证,可以在一定程度上减少算法的误检数;其次结合检测窗口的得分及位置信息,对非极大值抑制算法(Non-maximum suppression,Nms)进行改进,平均精度(Average precision,AP)提升了0.41%,LAMR降低了1.49%;最后采用星型可形变部件模型(Star-cascade DPM,cas DPM)对一定阈值下的得分检测窗口进行级联检测,AP提升了0.65%,LAMR降低了2.06%。在INRIA数据集上实验表明,满足实时检测的条件下,极大地降低了误检数,具有较好的行人检测效果。Pedestrian detection is a highspot and challenge research work in the area of computer vision and pattern recognition. The aggregate channel feature( ACF) algorithm generates lower detecting precision and higher log-average miss rate( LAMR) for pedestrian detection. We proposed an improve pedestrian detection method based on ACF algorithm in this paper. Firstly,we introduce objectness method to further verify low detection score object area captured by ACF,which can reduce false positive( FP) of the algorithm to some degree. Then,we combine the score with location of the detection window to modify the non-maximum suppression( Nms) algorithm,and the AP increases by 0.41%,while the LAMR decreases by 1.49%. Finally,we implement cascading detection for detection area by using a given threshold score and a cas DPM model. The AP increases by 0.65%,and the LAMR decreases by 2.06%. Experiments on INRIA dataset are conducted and validated,and the results show that our approach not only meets the needs of real-time detection,but also obviously decreases FP,and displays a good detection effect.
关 键 词:行人检测 聚合通道特征 objectness方法 casDPM模型
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222