具变号权函数的二阶微分系统正解的存在性  

Existence of positive solutions for second-order differential systems with indefinite weight function

在线阅读下载全文

作  者:秦培歌 薛春艳[1] QIN Peige;XUE Chunyan(School of Applied Science,Beijing Information Science & Technology University,Beijing 100192,China)

机构地区:[1]北京信息科技大学理学院,北京100192

出  处:《沈阳师范大学学报(自然科学版)》2018年第2期101-106,共6页Journal of Shenyang Normal University:Natural Science Edition

基  金:国家自然科学基金资助项目(11471146);北京市教育委员会专项(PXM2017_014224_000020)

摘  要:将二阶微分方程边值问题推广到n维二阶微分系统中,并研究n维二阶微分系统在权函数变号的情况下正解的存在性。首先,将二阶微分系统转化成与原微分系统等价的积分系统;其次,根据得到的积分系统的具体表达式以及与其对应的格林函数的性质,构造适当的范数、锥和积分算子;最后,运用范数形式的锥拉伸与锥压缩不动点定理,结合微分系统中权函数变号的特点,对非线性项构造适当的条件,使其满足不动点定理,得到积分算子不动点的存在性,进而得到原微分系统正解的存在性。运用不动点定理,得到积分算子至少存在一个不动点,进而得到原二阶微分系统至少存在一个正解。原具变号权函数的二阶微分系统至少存在一个正解。We extend the boundary value problem of second-order differential equation to ndimensional second-order differential systems,and consider the existence of positive solutions for ndimensional second-order differential system with indefinite weight function.Firstly,we transform the second-order differential system into integral system which equal to original differential system.Secondly,we construct suitable norm,cone and integral operator,according to the specific form of integral system and the properties of Green's function.Finally,using the fixed-point theorem of cone expansion and compression of norm type,and combining the characteristics of the indefinite weight function,we construct appropriate conditions of the nonlinear term,such that the fixedpoint theorem is satisfied.And we obtain the existence of the fixed point of the operator,and then the existence of the positive solutions of original differential system is obtained.Using the fixed point theorem,we obtain that there is at least one fixed point of the integral operator,and then there is at least one positive solution to original second-order differential system.There is at least one positive solution for original second-order differential system with indefinite weight function.

关 键 词:变号权函数 正解的存在性 二阶微分系统 不动点定理 

分 类 号:O175.8[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象