检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李建强[1] 张莹莹[1] 牛成林 LI Jian-qiang;ZHANG Ying-ying;NIU Cheng-lin(School of Energy Power and Mechanical Engineering,North China Electric Power University,Baoding,China,Post Code : 071003)
机构地区:[1]华北电力大学能源动力与机械工程学院
出 处:《热能动力工程》2018年第7期49-55,共7页Journal of Engineering for Thermal Energy and Power
摘 要:锅炉烟气含氧量是机组运行最重要的参数之一,为了准确测量氧量,在支持向量机(SVM)的基础上,提出最小二乘支持向量机(LSSVM),并结合粒子群算法(PSO)对模型参数(C,g)进行寻优,从而建立锅炉输入和输出变量之间的关系模型。将该方法应用到某电厂600 MW燃煤机组中,用训练后的模型进行预测,并与SVM模型预测结果进行比较。结果表明:采用LSSVM方法,能够辨识出多个变量与氧量之间的复杂关系,对锅炉氧量的预测误差为±0.03;并且PSO-LSSVM预测精度比PSO-SVM模型高,PSO-LSSVM模型具有预测精度高、泛化能力好、鲁棒性强和训练时间较短等优点。The oxygen content in flue gas of power plant is one of the most important parameters. In order to accurately predict the oxygen content, a prediction model was proposed for the boiler using Least Squares Support Vector Machine (LSSVM) and Particle Swarm Optimization (PSO) , with which the complex relation between input variables and output variable was successfully established. The proposed method was applied to a 600 MW pulverized coal-fired power plant. And the results of LSSVM were com- pared to those of SVM model. Results showed that the LSSVM method can recognize the complex relation- ship among many variables and the oxygen content, achieving the accurate prediction of the boiler oxygen content. The prediction accuracy of PSO-LSSVM is higher than that of PSO-SVM model. In summary, the PSO-LSSVM model has high prediction accuracy, and excellent generalization and stability, and requires short training time.
分 类 号:TP274.2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3