检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张娜[1,2] 张红玲 张栋良 屈忠义[1] ZHANG Na;ZHANG Hongling;ZHANG Dongliang;QU Zhongyi(Water Conservancy and Civil Engineering College,Inner Mongolia Agricultural University,Hohhot,Inner Mongolia 010018,China;Ningxia Institute of Water Resources Research,Yinchuan,Ningxia 750021,China)
机构地区:[1]内蒙古农业大学水利与土木建筑工程学院,内蒙古呼和浩特010018 [2]宁夏回族自治区水利科学研究院,宁夏银川750021
出 处:《排灌机械工程学报》2018年第11期1175-1179,共5页Journal of Drainage and Irrigation Machinery Engineering
基 金:国家自然科学基金资助项目(51069006)
摘 要:以内蒙古河套灌区3个尺度下1 024个样本的高光谱为模型输入,黏粒、粉粒、砂粒及有机质质量百分数为模型输出,通过多元回归、支持向量机及BP神经网络方法建立基于中尺度的反演模型,将其尺度上推至大尺度及下推至小尺度,并对其尺度转换的适用性进行评价.结果表明:基于中尺度建立的高光谱与土壤颗粒组成及有机质的反演模型均可以较好地应用于其他2个尺度,多元回归方法在其他2个尺度上的相关性为0.33~0.60,支持向量机方法为0.41~0.52,BP神经网络方法为0.52~0.72,其中BP神经网络方法建立的模型在其他2个尺度上具有更好的适用性;不同参数中,黏粒、粉粒、砂粒及有机质的相关系数分别为0.44~0.62,0.37~0.72,0.42~0.72及0.33~0.56,即颗粒组成的效果整体好于有机质质量百分数.Mesoscale inversion models of mass percentage of clay, power, sand and organic matter were established by using multiple regression, support vector machine and BP neural network based on the hyper-spectrum of 1 024 samples with 3 scales in Hetao Irrigation District of Inner Mongolia. The mesoscale scale was shifted to large and small scales, and the applicability of scale transformation was assessed for these models. The results show that the mesoscale inversion models of soil particle composition and organic matter are well applicable at the other two scales with correlation coefficient of 0.33-0.60 in multiple regressions, 0.41-0.52 in support vector machine and 0.52-0.72 in BP neural network. Clearly, the models based on BP neural network method show even better applicability at the other two scales. The correlation coefficients of clay, power, sand and organic matter are 0.44-0.62, 0.37-0.72, 0.42-0.72 and 0.33-0.56, respectively, suggesting that the fitting effect of particle compositions is better than that that of organic matter as a whole.
关 键 词:河套灌区 颗粒组成 有机质 高光谱 支持向量机 BP神经网络 尺度转换
分 类 号:S153[农业科学—土壤学] S227.9[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15