一阶惯性大时滞系统Smith预估自抗扰控制  被引量:18

Smith prediction and active disturbance rejection control for first-order inertial systems with long time-delay

在线阅读下载全文

作  者:王永帅 陈增强 孙明玮 孙青林 WANG Yongshuai;CHEN Zengqiang;SUN Mingwei;SUN Qinglin(College of Computer and Control Engineering,Nankai University,Tianjin 300350,China;Key Laboratory of Intelligent Robot-ics of Tianjin,Tianjin 300350,China)

机构地区:[1]南开大学计算机与控制工程学院,天津300350 [2]天津市智能机器人重点实验室,天津300350

出  处:《智能系统学报》2018年第4期500-508,共9页CAAI Transactions on Intelligent Systems

基  金:国家自然科学基金项目(61573199;61573197);天津市自然科学基金项目(14JCYBJC18700)

摘  要:大时滞系统是工业过程控制中的典型难题,将先进控制方法应用于大时滞系统时需要与传统的Smith预估器相结合才能获得理想的控制效果。针对一阶惯性大时滞系统,研究了Smith预估器与线性自抗扰控制技术相结合的设计问题,分析了系统的稳定条件和参数摄动问题。证明了当被控对象参数与Smith预估器参数相同时,闭环控制系统稳定的结论,同时推导了参数不同时控制系统稳定的一个充分条件。另外基于数值仿真,从暂态性能、稳定裕度和抗扰能力三方面分析了系统参数和控制参数摄动的影响作用,这些结果可用于Smith预估器和线性自抗扰控制器参数的整定。A system with long time-delay is a typical difficulty experienced in industrial process control. When an ad-vanced control method is applied to such a system, an ideal control effect can be obtained only by combining it with atraditional Smith predictor. In this paper, we address first-order inertial systems with long time-delay, investigate thecombined design of a Smith predictor with the linear active disturbance rejection control (LADRC) technique, and dis-cuss the system stability conditions and parameter perturbations. We prove that the closed-loop control system is stablewhen the parameters of the controlled object are identical to the Smith predictor parameters. Moreover, we deduce a suf-ficient condition for maintaining the stability of the control system when these parameters differ. In addition, using nu-merical simulation, we analyze the impacts of perturbation of the system and control parameters on the transient per-formance, stability margin, and disturbance rejection ability. These results can be used to tune the parameters of theSmith predictor and LADRC controller.

关 键 词:大时滞系统 一阶惯性系统 线性自抗扰控制 SMITH预估器 稳定裕度 劳斯判据 稳定性分析 稳定可行域 

分 类 号:TP272[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象