基于LPP的转子振动故障特征提取方法  被引量:13

Feature extraction of rotor vibration fault based on LPP algorithm

在线阅读下载全文

作  者:梁超 路鹏 郜宁 祁伟 LIANG Chao;LU Peng;GAO Ning;QI Wei(Xinjiang Electric Power Research Institute of State Grid Xinjiang Electric Power CO.LTD.,Urumqi 830000,Chin)

机构地区:[1]国网新疆电力有限公司电力科学研究院,新疆乌鲁木齐830000

出  处:《振动工程学报》2018年第3期539-544,共6页Journal of Vibration Engineering

摘  要:针对振动信号的非线性、非平稳特征,提出了一种基于局部保持投影(Locality Preserving Projections,LPP)的转子故障特征提取方法。该方法利用LPP降维后保留数据内部非线性结构的特点,对高维的故障振动信号降维并提取出低维的数据作为特征矢量,采用BP神经网络作为分类器进行故障诊断。实验结果表明,LPP方法能有效提高故障诊断的准确率。According to the non-linear and non-stationary characteristics of vibration signals,a method of fault feature extraction of rotor based on locality preserving projection(LPP)is proposed.By virtue of its feature that it can project the high dimensional data onto low dimensional data space while maintaining the inherent nonlinear features of structures,the high dimensional vibration signals are reduced to low dimensional space and then is extracted as the characteristic vector.Afterwards,the different faults are classified and diagnosed by the BP neural network.The experiment results show that this method can improve the accuracy of the fault diagnosis.

关 键 词:故障诊断 转子 特征提取 局部保持映射 BP神经网络 

分 类 号:TH165.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象