涡轮转子径向变形多目标协同稳健性优化  

Multi-objective collaborative robust optimization for turbine rotor radial deformation

在线阅读下载全文

作  者:陈志英[1] 周平[1] 刘勇[1] CHEN Zhiying;ZHOU Ping;LIU Yong(School of Energy and Power Engineering,Beijing University of Aeronautics and Astronautics,Beijing 100191,China)

机构地区:[1]北京航空航天大学能源与动力工程学院,北京100191

出  处:《航空动力学报》2018年第7期1537-1543,共7页Journal of Aerospace Power

基  金:国家自然科学基金(51275024)

摘  要:考虑到涡轮转子径向变形对涡轮叶尖径向间隙以及篦齿径向封严间隙的影响,提出涡轮转子径向变形多目标协同稳健性优化方法。利用基于Kriging模型的分布式协同响应面法(DCRSM)分别建立涡轮转子和涡轮篦齿的参数与径向变形间的响应面模型,并求解单目标下的稳健最优解。采用理想点法建立涡轮转子和篦齿径向变形多目标协同稳健性优化模型,并进行多目标协同稳健性优化求解。优化结果显示:提出的多目标协同稳健性优化方法与单目标稳健性优化方法相比涡轮转子和篦齿径向变形量的标准差分别降低了2.6%和4.9%。提出的方法为涡轮转子参数设定提供一定的参考。A Multi-objective robust collaborative optimization method for turbine rotor radial deformation was presented.The influence of turbine rotor radial deformation was considered for turbine blade tip clearance and labyrinth seal clearance.The approximation function model of parameters with rotor and labyrinth seal radial deformation was built by the Kriging method based distributed collaborative response surface method(DCRSM).The single objective robust optimization result was generated by using those response surface approximation models.The ideal point method was selected to construct the multi-objective robust collaborative optimization model of turbine rotor and labyrinth seal radial deformation.The multi-objective collaboration robust optimization process was implemented.Compared with the results of single objective optimization,the results of presented collaborative robust optimization showed that the turbine rotor and labyrinth radial deformation standard deviation decreased by 2.6% and 4.9%,respectively.The proposed method provides a reference for turbine rotor parameters design.

关 键 词:涡轮转子 篦齿 KRIGING模型 多目标协同优化 稳健性优化 

分 类 号:V232[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象