检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭力仁 胡以华 董骁 李敏乐 Guo Li-Ren;Hu Yi-Hua;Dong Xiao;Li Min-Le(State Key Laboratory of Pulsed Power Laser Technology,College of Electronic Engineering,National University of Defense Technology Hefei 230037,Chin)
机构地区:[1]国防科技大学电子对抗学院,脉冲功率激光技术国家重点实验室,合肥230037
出 处:《物理学报》2018年第15期286-297,共12页Acta Physica Sinica
基 金:国家自然科学基金(批准号:61271353)资助的课题
摘 要:利用激光探测微多普勒效应可以精确估计微动参数,有利于实现目标的准确分类和精细识别.运动目标的微多普勒效应是一种由多项式相位信号模型与正弦调频模型组成的混合信号.对于这类混合信号中的微动参数估计目前还未提出有效的方法.对此,本文提出一种基于分数阶傅里叶变换(Fr FT)的平动补偿方法,通过设计对Fr FT参数域的带宽搜索方法,可以从混合信号中精确估计平动参数,实现平动和微动的分离;通过设计静态参数粒子滤波器,从补偿后的信号中准确估计了微动参数;针对静态参数模型,采用马尔可夫-蒙特卡罗方法增加粒子多样性,并利用累积残差定义新的粒子权重计算函数,保证了算法在对多维参数估计时的快速有效收敛,避免了参数分别估计时误差传递的影响.通过仿真分析对比和实验数据,验证了本文所提补偿和参数估计算法的有效性.Precise target identification is significant for commanding and identifying enemies. The micro-Doppler effect(MDE)can reflect the subtle movement characteristics of the targets, which provides a new way of detecting and recognizing the target. However, the current research mainly focuses on the micro-motion feature extraction and classification of the targets, which is not capable of identifying the targets of the same type. In fact, by accurately estimating the micromotion parameters and combining sufficient prior knowledge, the target can be accurately identified. Compared with the microwave radar, the laser detected MDE has high sensitivity and precision in micro-motion parameter estimation.This is more conducive to realizing the accurate classification and fine identification of the targets. In real detection,the MDE always exists in the moving targets. This will generate a mixed echo signal modeled by the polynomial phase signal and sinusoidal frequency modulation(SFM) signal. So far, there have been no effective methods of estimating the micro-motion parameters in such mixed signals. In this regard, a set of translational motion compensation and micro-motion parameter estimation methods is proposed in this paper. A bandwidth searching method based on the fractional Fourier transform(Fr FT) is presented to precisely estimate the translation parameters, which will be used to realize the compensation for the translational motion. The advanced particle filtering(PF) method using the static parameter model is designed for the micro-motion parameters in the remaining SFM term. Given the lack of particle diversity in static parameter PF, the Markov chain Monte Carlo sampling is employed, which also helps to improve the algorithm efficiency. Meanwhile, a new likelihood function in calculating the particle weights is designed by using the cumulative residual. With this improvement, the correct convergence under multi-dimensional parameter condition is guaranteed. The proposed method can avoid the inf
关 键 词:激光微多普勒效应 分数阶傅里叶变换 粒子滤波 平动补偿
分 类 号:TN24[电子电信—物理电子学] TN911.23
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.252.197