检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙明玮 马顺健 陈增强 胡超芳[2] Sun Mingwei;Ma Shunjian;Chen Zengqiang;Hu Chaofang(Department of Automation and Intelligent Science,College of Computer and Control Engineering,Nankai University,Tianjin 300350,China;School of Electrical Engineering and Automation,Tianjin University,Tianjin 300072,China)
机构地区:[1]南开大学计算机与控制工程学院自动化与智能科学系,天津300350 [2]天津大学电气与自动化工程学院,天津300072
出 处:《系统仿真学报》2018年第8期2966-2972,共7页Journal of System Simulation
基 金:国家自然科学基金(61573197);天津市自然科学基金(13JCYBJC17400);天津市过程检测与控制重点实验室开放基金(TKLPMC-201613)
摘 要:指定到达时间是航迹规划中的一项特别约束。由于带有定时、定角度和规划区域存在禁飞区等约束,航迹规划难以实时求解。通过引入实用的航迹模型,航迹规划问题转换为求解关键航路点的非线性优化问题,确定几何关系后,原问题时间、角度、禁飞区等约束等价为该优化问题的约束条件,继而整理为序列二次规划方法可以求解的数学形式,借助稀疏非线性优化求解器(SNOPT)进行快速求解。在Windows操作系统下采用MFC设计计算机辅助的航迹规划人机交互仿真平台。数学仿真结果验证了算法的有效性和交互仿真平台的方便灵活性。Specified terminal time is a special requirement in some path planning problems. It is difficult to solve in real time with specified time, angle and multiple no-fly zones considered. A practical path model is utilized, and a nonlinear optimization problem with respect to waypoints is reformulated. The requirements on time, angle and obstacle avoidance for original path planning problem are converted into constraints of the proposed optimization after geometrical relationships are identified. The optimization problem is established and met the form of sequential quadratic programming problem which is solved by SNOPT (Sparse Nonlinear OPTimizer) package. A computer-aM interactive simulation platform based on Windows OS is designed by MFC (Microsoft Foundation Classes). Simulations verify the effectiveness of the proposed algorithm and the flexibility of the interactive platform.
分 类 号:TP391.72[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229