检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴琼[1] 雷松泽[1] 王艳红 Wu Qiong, Lei Songze, Wang Yanhong(Xi'an Technological University, Xi'an 710021, Chin)
机构地区:[1]西安工业大学,陕西西安710021
出 处:《环境科学与管理》2018年第7期91-94,共4页Environmental Science and Management
基 金:陕西省教育厅专项科研计划项目(编号:17JK0364);陕西省工业领域重点项目(编号:2016KTZDGY4-09)
摘 要:为了优化环境污染监测,需要对环境污染目标区域进行有效识别,提出基于深度学习和无人机技术的环境污染目标区域识别方法,采用无人机机载空间扫描方法进行图像采集,对采集的环境图像进行污染区域的边缘轮廓检测和图像分割处理,采用深度学习算法对环境污染区域的图像进行自适应分块标记和识别,实现对环境污染区域的图像检测和三维区域识别。采用该方法进行环境污染区域的目标识别准确性较好,对环境污染区域分块识别的精度较高,较强。In order to optimize the monitoring of environmental pollution,it is necessary to identify the target area of environmental pollution effectively. A method of identifying the target area of environmental pollution based on depth learning and UAV technology is proposed. The airborne space scanning method of UAV is used to collect images,and the environmental images are detected and segmented. The deep learning algorithm is used to self-adaptively label and recognize the image of the polluted area,and the image detection and 3 D recognition of the polluted area are realized. The simulation results show that the method has good accuracy and robustness in environmental pollution area recognition.
分 类 号:X22[环境科学与工程—环境科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.201.190