检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵东波 李辉[2] Zhao Dongbo;Li Hui(School of Electronic Engineering,Xi'an Aeronautical University,Xi'an 710077,China;School of Electronic Information,Northwestern Polytechnical University,Xi'an 710129,China)
机构地区:[1]西安航空学院电子工程学院,陕西西安710077 [2]西北工业大学电子信息学院,陕西西安710129
出 处:《红外与激光工程》2018年第8期384-390,共7页Infrared and Laser Engineering
基 金:国家自然科学基金(61571364);陕西省自然科学基金(2017JM6037);陕西省教育厅专项研究计划(17JK0397)
摘 要:在雷达目标识别中,利用核主分量分析(KPCA)方法来进行目标特征提取,忽略了高分辨率距离像(HRRP)的本身特性。提取一种平移不变特征-中心矩作为特征向量,采用KPCA进行特征降维;由于BP神经网络易陷入局部极小,采用遗传算法(GA)对BP网络节点权值和阀值进行优化选择。基于雷达实测数据的实验结果表明:平移不变的KPCA特征提取方法实现了平移不变和降维的结合,同时,利用GA优化BP神经网络提高了分类器稳定性改善易陷入局部最小的缺陷,提高了雷达目标识别的性能。When using the method of kernel principal component analysis(KPCA) to extract feature of target in radar target recognition, the HRRP characteristic is ignored. A translation invariant features-central moments was extracted as feature vector, KPCA was used to reduce the dimensionality; The BP neural network was easy to fall into local minimum, the genetic algorithm(GA) was used to optimize the BP network node weights and threshold. The experimental results based on the measured radar data show that the translation invariant KPCA feature extraction method achieve the combination of translation invariant and descending dimension, and the BP neural network optimized by GA improves the stability of classifier and improves the defect of falling into local minimum easily.
关 键 词:高分辨率距离像 核主分量分析 中心矩 遗传算法 BP神经网络
分 类 号:TN959.1[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127