检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:秦莹华 李菲菲[1] 陈虬 QIN Yinghua;LI Feifei;CHEN Qiu(Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093
出 处:《电子科技》2018年第8期21-24,共4页Electronic Science and Technology
基 金:上海市高校特聘教授(东方学者)岗位计划(ES2012XX;ES2014XX)
摘 要:自动图像标注(AIA)是图像检索领域一项具有挑战性的任务。卷积神经网络(CNNs)在大规模视觉识别挑战中取得杰出的分类性能。文中将图像标注问题看成一个多标签学习问题,提出了一种基于卷积神经网络的多标签分类算法。采用Corel5k数据库训练和测试卷积神经网络。由于训练集的缺乏,采用从Image Net分类任务中迁移得到的参数作为一个"中级图像特征的通用提取器"。采用两种损失函数作为多标签分类器,将多标签学习转化为多个标签的分类问题。将实验结果与其他方法进行比较,表明了该方法的有效性。Automatic image annotation( AIA) is a challenging task in image retrieval field. Convolutional neural networks( CNNs) have recently shown outstanding image classification performance in the large-scale visual recognition challenge( ILSVRC2012). The image annotation problem is considered as a multi-label learning problem and a multi-label classification algorithm based on convolutional neural networks is proposed. The Corel5 K image dataset is used to train and test the model. Due to the lack of training data,the parameters transferred from the Image Net classification task is used as a generic extractor of mid-level image representation. Two loss functions are used as multi-label classifiers and the multi-label learning problem are transformed into multiple labels classification problem. The experimental results are compared with other methods,and the effectiveness of the proposed method is demonstrated.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31