检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冉星浩 陶建锋[1] 杨春晓 RAN Xinghao;TAO Jianfeng;YANG Chunxiao(Air and Missile Defense College,Air Force Engineering University,Xi'an 710051,China;The Unit 93567 of PLA,Baoding 074100,China)
机构地区:[1]空军工程大学防空反导学院,陕西西安710051 [2]中国人民解放军93567部队,河北保定074122
出 处:《探测与控制学报》2018年第3期74-79,共6页Journal of Detection & Control
摘 要:针对传统粒子滤波面临的重要密度函数的选取和粒子多样性丧失引起的样本贫化问题,提出基于无迹卡尔曼滤波和权值优化的改进粒子滤波算法。与传统的粒子滤波算法相比,有两点改进:首先该算法采取无迹卡尔曼滤波产生建议分布函数;其次,在重采样过程,提出基于权值优化的改进重采样算法来增加粒子的多样性。仿真结果表明,改进算法降低了粒子滤波算法的粒子退化程度并避免样本贫化现象的出现,更加接近真实值,提高了跟踪精度。Aiming at the problems of the importance function choice and the sample impoverishment after resampling,an improved particle filter algorithm was proposed in this paper,which based on the unscented Kalman filter and weight optimization.Compared with the traditional particle filter,this algorithm had two improvements,UKF was used to generate the importance density function,and weight optimization was used to ensure all useful information inherited,which could maintain the diversity of particle.The theory analysis and simulation showed that the improved particle filter algorithm could solve particle degeneracy and avoid sample impoverishment.
分 类 号:TN713[电子电信—电路与系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249