检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:夏光 邹斌 唐希雯 陈无畏 Xia Guang1, Zou Bin1, Tang Xiwen2, Chen Wuwei3(1. Automotive Engineering Technology Research Institute, Hefei University of Technology, Hefei 230009;2. School of Radar Confrontation, National University of Defense Technology, Hefei 230037;3. School of Automotive and Traffic Engineering, Hefei University of Technology, Hefei 23000)
机构地区:[1]合肥工业大学汽车工程技术研究院,合肥230009 [2]国防科技大学电子对抗学院,合肥230037 [3]合肥工业大学汽车与交通工程学院,合肥230009
出 处:《汽车工程》2018年第4期465-474,共10页Automotive Engineering
基 金:国家自然科学基金(51205101);科技部重点研发计划项目(2016YFD0700604和2016YFD0700605)资助
摘 要:针对拥堵工况下车辆自动变速器频繁换挡的问题,选取车辆平均车速、平均节气门开度和采样时间内制动踏板作动次数为评价因子,建立T-S模糊神经网络进行拥堵工况辨识,提出基于拥堵工况辨识的车辆自动变速器分层修正控制策略;将车辆自动变速控制分为上层辨识决策层与下层换挡执行层,上层采用T-S模糊神经网络进行拥堵工况辨识与换挡修正决策;下层接收上层修正控制指令执行换挡修正。仿真与实车试验结果表明:采用TS模糊神经网络可准确识别拥堵工况,基于拥堵工况辨识的车辆自动变速分层修正控制策略可有效避免拥堵工况时频繁换挡,减少换挡执行部件和制动系统的磨损。In view of the undesirable frequent shifting of vehicle automatic transmission under congestion conditions,a T-S fuzzy neural network is set up to identity congestion conditions and a hierarchical correction control strategy for automatic transmission based on congestion condition identification is proposed with the average vehicle speed,the average throttle opening,and the average times of brake pedal actuation in sampling period selected as evaluation factors. The vehicle automatic transmission control is divided into two layers: the upper layer for identification and decision-making while the lower layer for shifting execution. The upper layer adopts T-S fuzzy neural network to identify congestion conditions and make decisions of shift correction,while the lower layer executes corrected shift according to control instructions from the upper layer. The results of simulation and real vehicle test show that using T-S fuzzy neural network can accurately identify congestion conditions,and the hierarchical correction control strategy based on congestion conditions identification can effectively avoid frequent shifting in congestion conditions,and hence reduce the wear of shift actuation components and brake system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.221