基于粗糙集和BP网络的微网短期负荷预测  被引量:12

Short-Term Load Forecasting of Micro Grid Based on Rough Sets and BP Neural Network

在线阅读下载全文

作  者:王帅[1] 王文爽[1] 孙伟[1] 张珂赫 WANG Shuai;WANG Wen-shuang;SUN Wei;ZHANG Ke-he(School of Information and Electrical Engineering,China University of Mining and Technology,Xuzhou 221008,China;Jiangsu Electric Power Company Xuzhou Branch,Xuzhou 221000,China)

机构地区:[1]中国矿业大学信息与电气工程学院,江苏徐州221008 [2]江苏省电力公司徐州供电公司,江苏徐州221000

出  处:《控制工程》2018年第8期1528-1533,共6页Control Engineering of China

基  金:国家自然科学基金资助项目(60974050)

摘  要:结合粗糙集和BP神经网络两种智能控制算法提出了微网短期负荷预测模型。首先将影响微网负荷的气象和日类型等因素利用粗糙集建立历史数据属性决策表,通过属性约简算法对其进行属性约简,找到影响微网负荷的核心因素,然后将该核心因素作为BP神经网络的输入量对微网负荷进行预测。BP网络具有收敛速度慢和易陷入局部最优等缺陷,据此提出一种基于模拟退火遗传算法优化的BP神经网络新模型。实验表明,采用粗糙集和改进BP神经网络的新模型对微网负荷进行预测取得了良好的效果,证明了该方法的有效性。A short-term load forecasting model based on two integrated intelligent algorithms, i.e. attribute reduction of rough sets and BP artificial neural network, is proposed. At first, according to the historical data such as weather and type of day influencing the micro-grid loads, an attribute decision table is built up and the date mining is performed by means of attribute reduction algorithm, thus the kernel factors influencing the loads are determined and using them as the input vectors of the BP artificial neural network the load forecasting is conducted. In order to solve the defects of BP network which has slow convergence and is easy to trap in local optimum, a BP network which is optimized by genetic simulated annealing algorithm is proposed. Forecasting results of calculation examples show that this method has achieved good results in the prediction speed and precision and is suitable for short-term load forecasting.

关 键 词:微网 短期负荷预测 粗糙集 BP神经网络 模拟退火遗传算法 

分 类 号:TP173[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象