改进的β-NMF在基因聚类中的应用  

Application of Improved β-NMF to Gene Clustering

在线阅读下载全文

作  者:游春芝 崔建 YOU Chun-zhi;CUI Jian(Basic Medicine Department,Fenyang College,Shanxi Medical University,Shanxi Luliang 032200,China)

机构地区:[1]山西医科大学汾阳学院基础医学部,山西吕梁032200

出  处:《重庆工商大学学报(自然科学版)》2018年第5期46-50,共5页Journal of Chongqing Technology and Business University:Natural Science Edition

摘  要:针对基因表达数据高维、高噪声等特点,提出了一种基于正交约束的负矩阵分解算法;该算法将正交约束引入到β散度矩阵分解的准则函数中进行优化求解,用梯度下降方法得出矩阵分解的乘积迭代规则,并利用分解项来降低特征空间的维度,将得到的向量用于K均值聚类;实验中选择5种肿瘤基因表达数据,实验结果表明:改进的算法分解所得矩阵在聚类效果上明显优于其他的方法.In view of gene expression characteristics of high dimension and high noise,orthogonal subspace matrix decomposition algorithm is proposed based on beta divergence matrix decomposition by introducing the orthogonal constraint to objective function for optimization and solution. The iteration rules of the matrix decomposition is given by the gradient descent method,the decomposition items are used to reduce the dimension of feature space,and the derived vector is used for k-means clustering. Five tumor gene expression data are chosen for the experiment,and the results show that the improved algorithm matrix decomposition clustering is obviously better than other methods.

关 键 词:非负矩阵分解 β散度 正交约束 梯度下降 聚类 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象