检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐盛 刘毅敏[1] XU Sheng;LIU Yi-min(College of Information Science and Engineering,Wuhan University of Science and Technology,Wuhan Hubei 430081,China)
机构地区:[1]武汉科技大学信息科学与工程学院,湖北武汉430081
出 处:《计算机仿真》2018年第9期349-352,357,共5页Computer Simulation
摘 要:在带钢轧制过程中,带钢张力一旦发生较大的波动会影响带钢产品的质量,对轧制线带钢张力故障进行分类并进行及时有效的处理,可以提高带钢连轧生产的稳定性和可靠性。首先提出针对带钢张力信号特点而采用的局部均值分解方法的原理,并给出了支持向量机的设计方法。其次结合现场生产过程中故障发生较少的情况,对从现场采集的带钢张力信号采用LMD-SVM方法进行仿真研究,验证了LMD-SVM方法能有效识别带钢生产中的故障。通过对比在不同训练样本个数下的仿真结果,验证了LMD-SVM方法在小样本下仍然能对故障具有较高的辨识率,可以为带钢质量优化控制与故障处理提供一定的参考。In the strip steel rolling process, if the tension of strip steel fluctuates greatly, the quality of strip prod- ucts will be affected. Thus, the classification, timely and effective treatment of tension faults in rolling line can im-prove the stability and reliability of strip continuous roiling. Firstly, for the characteristics of strip tension signal, a fault classification method based on Local Mean Decomposition (LMD) was proposed. Subsequently, the design method of support vector machines (SVM) was given. According to the actual situation, the analysis results from the actual strip tension signal which were simulated to demonstrate that the LMD method can be applied to the fault classi- fication of strip rolling effectively. Furthermore, compared with the training simples in different numbers, the simula- tion results indicate that the LMD method still has the high recognition rate with small sample size. Therefore, the LMD-SVM method can provide some references for quality optimization control and fault handling of strip steel.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.9