一类带乘性噪声随机分数阶微分方程数值方法的弱收敛性与弱稳定性  被引量:3

WEAK CONVERGENCE AND WEAK STABILITY OF A NUMERICAL METHOD FOR THE CLASS OF STOCHASTIC FRACTIONAL DIFFERENTIAL EQUATION WITH MULTIPLICATIVE NOISE

在线阅读下载全文

作  者:毛文亭 张维 王文强[1] Mao Wenting;Zhang Wei;Wang Wenqiang(School of Mathematics and Computational Science,Xiangtan University,Xiangtan 411105,China)

机构地区:[1]湘潭大学数学与计算科学学院

出  处:《数值计算与计算机应用》2018年第3期161-171,共11页Journal on Numerical Methods and Computer Applications

基  金:国家自然科学基金(11271311,11171352);湖南省教育厅重点项目(14A146)资助项目

摘  要:本文研究了一类带乘性噪声随机分数阶微分方程数值方法的弱收敛性和弱稳定性.首先基于It公式和Riemann-Liouville分数阶导数构造了求解带乘性噪声随机分数阶微分方程的数值方法,然后证明当分数阶α满足0〈α〈1时,该方法是1-α阶弱收敛的和弱稳定的,文末数值试验的结果验证了理论结果的正确性.This paper investigates the weak convergence and weak stability of the numerical method for a class of stochastic fractional differential equation with multiplicative noise. Firstly,the numerical method which is used to solve the stochastic fractional differential equation with multiplicative noise, is constructed by It formula and Riemann-Liouville fractional derivative. Then it is proved that the method is 1 — α order weak converges and weak stable when the fractional order a satisfy 0 〈α 〈1. Finally, one numerical example is given. The theoretical results are also confirmed by a numerical experiment.

关 键 词:带乘性噪声随机分数阶微分方程 数值方法 弱收敛性 弱稳定性 

分 类 号:O241.8[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象