检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴丹[1] 陶月赞[1] 林飞[1] WU Dan;TAO Yuezan;LIN Fei(School of Civil and Hydraulic Engineering,Hefei University of Technology,Hefei 230009,P.R.China)
机构地区:[1]合肥工业大学土木与水利工程学院,合肥230009
出 处:《应用数学和力学》2018年第9期1043-1050,共8页Applied Mathematics and Mechanics
基 金:国家自然科学基金(51309071)~~
摘 要:在河渠水位迅速变化后再缓慢变化的条件下,建立了河渠半无限潜水含水层中非稳定渗流模型.利用Boussinesq第一线性化方法及Laplace变换,并注意应用Laplace变换中的"积分性质",给出形式相对简单、由常用函数表达的解,阐述特定解及其相应的物理意义.由解所揭示的潜水位变化规律表明,含水层任一点处潜水位变动速度的时间变化曲线形态是固定的,与河渠边界水位变动速率λ无关;潜水最大变速发生的时间,随λ呈非线性位移.依据潜水位变化规律,建立利用潜水位变动速度求含水层参数的方法,并用实例演示了拐点法求参数的过程.Based on the first linearized Boussinesq equation,the analytical solution of the transient groundwater model for description of phreatic flow in a semi-infinite aquifer bordered by a linear stream with linearly varying stream water levels,was derived through the Laplace transform and in view of the integral property of the Laplace transform. The solution is composed of some common functions and its expression form is relatively simple. According to the mathematical characteristics of the solution,its corresponding physical meaning was discussed. The variation rule of the phreatic level revealed by the solution shows that the temporal variation curve of the aquifer at any point is fixed and has nothing to do with the change rate of the water level of the river channel. The time of the maximum speed change of the phreatic aquifer nonlinearly varies with λ. Based on the variation rule of the phreatic level,the method determining the aquifer parameters with the changing velocity of the phreatic level was established,and the process of obtaining the parameter with the inflection point method was demonstrated through an example.
关 键 词:潜水非稳定流 河渠边界 水位线性变化 LAPLACE变换 积分性质
分 类 号:P641.132[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7