基于多特征融合的前方车辆检测的应用与研究  被引量:1

Application and research of front vehicle detection based on multi-feature fusion

在线阅读下载全文

作  者:马龙 刘胜[1] Ma Long;Liu Sheng(School of Mechanical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)

机构地区:[1]上海工程技术大学机械工程学院,上海201620

出  处:《计算机时代》2018年第10期42-45,共4页Computer Era

摘  要:为了提高前方车辆检测的准确率和效率,提出了一种改进的多分辨率下的多特征提取的方向梯度直方图(HOG)特征融合算法。首先将样本扩缩为分辨率不同的图像,后转为YUV色彩空间,其次加权融合Y,U,V多通道方向梯度直方图(HOG)形成训练特征,最后采用支持向量机(SVM)对融合后的训练特征车辆分类器训练和检测。实验表明,该算法比传统HOG提取特征算法车辆检测率更高,效率高达98.92%,并且在不同天气状况下均有良好的检测效果和鲁棒性。To improve the accuracy and efficiency of vehicle detection, a multi-feature extractive histogram of oriented gradient (HOG) fusion algorithm is proposed. Firstly, the sample pattern is expanded and narrowed to images with different resolutions and converted to YUV color space, followed by weighted fusion Y, U, V multi-channel histogram of oriented gradient (HOG) training features, Finally, support vector machine (SVM) is used to train and detect the trained features. The experiment show-s that this algorithm has a higher detection rate than the traditional HOG extraction feature algorithm, and the efficiency is as high as 98.92%, and have good detection effect and robustness under different weather conditions.

关 键 词:方向梯度直方图 YUV色彩空间 支持向量机 车辆检测 多特征融合 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象