检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王强[1,2] 李柏林[1] 侯云[1] WANG Qiang;LI Bai-lin;HOU Yun(SOUTHwest Jiaotong University,School of Mechanical Engineering,Chengdu Sichuan 610031,China;Chengdu Technological University,College of Mechanieal Engineering,Chengdu Sichuan 611730,China)
机构地区:[1]西南交通大学机械学院,四川成都610031 [2]成都工业学院机械学院,四川成都611730
出 处:《计算机仿真》2018年第11期421-425,435,共6页Computer Simulation
基 金:国家自然科学基金(51275431);四川省科技厅项目(2016GZ0194);四川省教育厅项目(16ZB0330);四川省大学生创新创业项目(201611116007)
摘 要:铁路扣件是固定轨道的连接件,扣件丢失或断裂直接影响铁路运输的安全。扣件运行环境复杂,采集的图像与背景差异性较小,难以自动识别。针对扣件图像自动化识别提出了一种新的图像局部二元模式编码算法。用高斯分布进行随机采样得到邻域点,利用随机点对的差分关系得到二元模式编码,称为高斯采样二元模式编码GSLBP (Gaussian sampling local binary pattern)。为了避免噪声影响,利用随机点邻域像素值之和代替随机点的值,通过比较像素值之和得到编码,最后利用卡方距离对图像进行分类。该算法更加准确的反映了图像局部纹理信息,图像差异化信息更加明显。在铁路扣件图像上进行了实验,比较了各种LBP编码方法与提出的方法的分类结果,结果表明提出的方法具有更好的分类结果。Railway fasteners are the connectors of the fixed railway track. Fasteners lost or broken directly affect the safety of railway transport. The complicated running environment,the indistinguishable differences between fasteners images and background make it difficult to automatically identify the fasteners. A new local binary image coding algorithm is proposed to automatically identify the fasteners. Gaussian sampling was used to obtain the neighborhood point randomly,and difference relation of random point pairs was adopted to get the binary pattern encoding,which was called Gaussian sampling local binary pattern. In order to avoid the influence of noise,the sum of the pixel values of the random point was substituted for the value of the random point,and the sum of the pixel values was compared to get the encoding. Finally,the image was classified with chi-square distance. The algorithm reflects the image of local texture information more accurately and image differentiation information is more obvious. Tests on railway fasteners of the LBP coding method and the proposed method were carried and compared. The results show that the proposed method has better classification results.
关 键 词:局部二元模式 图像识别 图像分类 高斯分布 随机采样
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.129.249