基于Smith预估的模糊自适应主汽温控制系统  被引量:12

The Adaptive Fuzzy Control System for Main Steam Temperature Based on Smith Predictor

在线阅读下载全文

作  者:平玉环[1] 管志敏[1] 李宗耀[2] PING Yuhuan;GUAN ZHimin;LI Zongyao(North China Electric Power University,Baoding 071003,China;Hebei Guohua Dingzhou Power Generation Co.,Ltd.,Dingzhou 073000,China)

机构地区:[1]华北电力大学,河北保定071003 [2]河北国华定州发电有限责任公司,河北定州073000

出  处:《中国电力》2018年第11期9-14,共6页Electric Power

基  金:中央高校基本科研业务费专项基金(2015MS106)~~

摘  要:针对火电厂主汽温被控对象大滞后、大惯性、模型不确定,采用常规的串级PID控制难以获得良好控制效果的特点。结合模糊理论与Smith预估技术,提出了基于Smith预估的模糊自适应主汽温控制系统,即采用Smith预估内回路广义被控对象,以模糊自适应控制器对预估后的广义被控对象进行控制。该控制系统容易实现,对工况变化具有良好的自适应性。对某主汽温系统5种工况进行仿真,结果表明该控制方案具有较强的鲁棒性和抗干扰能力。此外,该控制方法在现有的集散控制系统和现场总线控制系统中容易实现,不需要增加硬件投资,具有较高的工程应用价值。Due to the large time-delay, high inertia and model uncertainty of the main-stream temperature object in fossil-fired powerstation, it is difficult to achieve satisfactory results with conventional cascade PID control. In this paper, in combination with thefuzzy theory and Smith prediction technology, a new fuzzy adaptive control system for main steam temperature based on multi-model and Smith predictor is proposed, in which by virtue of Smith predictor the inner loop generalized controlled object is estimatedand then a fuzzy adaptive controller is applied to control the generalized controlled object. This control system is simple to beimplemented with satisfactory self-adaptability to various operating conditions. Furthermore, from the simulation results under fivedifferent conditions this control system exhibits strong robustness and anti-disturbance capabilities. In addition, the control methodcan be applied with easiness in the existing distributed control system and fieldbus control system without extra hardware investment,which has higher value of engineering applications.

关 键 词:主蒸汽温度 模糊自适应 SMITH预估器 系统仿真 多模型控制 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象