检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李立平[1] LI Liping(School of Science,Huzhou University,Huzhou 313000,China)
出 处:《湖州师范学院学报》2018年第10期101-105,共5页Journal of Huzhou University
基 金:湖州师范学院2016年度校级专业核心课程建设项目
摘 要:探讨了解的延拓定理的教学策略.针对学生在理解和应用定理时遇到的困难,从分析学的角度补充证明了定理,并给出了两个可以进行条件验证的推论.在此基础上,结合三个具体例子,提供了不同于教材的求最大存在区间的新途径.This paper discusses the teaching strategy of continuation theorem of solutions which is one of important theories in Ordinary Differential Equations. In order to help students to understand and apply this theorem, its proof has been added from an analytical point of view. Moreover, two corollaries whose conditions can be verified directly have been deduced. Based on these results, new methods, being different from that of textbook, have been applied for three examples to obtain the corresponding maximum existing interval of solutions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.82.191