检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜兴丹 陈安军 DU Xingdan;CHEN Anjun(School Mechanical Engineering,Jiangnan University,Wuxi 214122,Jiangsu China;China National Control and Testing Center for Packaging Quality,Wuxi 214122,Jiangsu China)
机构地区:[1]江南大学机械工程学院,江苏无锡214122 [2]国家轻工业包装制品质量监督检测中心,江苏无锡214122
出 处:《噪声与振动控制》2018年第6期48-51,71,共5页Noise and Vibration Control
摘 要:以3次非线性缓冲包装系统为研究对象,建立系统跌落冲击动力学方程,应用牛顿谐波平衡法(NHB)获得系统跌落冲击动力学响应的1阶、2阶近似解析解,并获得产品位移、加速度响应最大值以及跌落冲击时间等重要参数的解析表达式。与龙格-库塔(R-K)数值分析解和变分迭代(VIM)近似解比较,算例分析表明,牛顿谐波平衡法2阶近似解与龙格-库塔数值解最为接近,随跌落高度增加2阶近似解精度有所降低,但相对误差控制在2.5%以内,能满足工程设计需要。研究结果可为非线性包装系统跌落冲击响应分析提供一种新的高精度近似分析方法。The dropping shock dynamic equations of a cubic nonlinear cushion packaging system are established. The Newton-harmonic balancing (NHB) method is used to obtain the first-order and second-order approximate analytical solutions of dropping shock dynamic response of the system. And the analytical expressions of some important parameters, including the maximum displacement, maximum acceleration of the products and the dropping shock duration, are obtained. The results are compared with those of Runge-Kutta method and variational iteration method (VIM). The example analysis shows that the second order approximate solution of the Newton-haxmonic balancing method is closest to that of Runge- Kutta method. The precision of the second-order approximate solution decreases with the drop height increase, but the relative error is controlled within 2.5 %, which can meet the engineering design requirements. The research results provide a new high-precision approximate analysis method for the dropping shock response analysis of nonlinear packaging systems.
关 键 词:振动与波 牛顿谐波平衡 非线性 位移最大值 加速度最大值 跌落冲击时间
分 类 号:TB485.3[一般工业技术—包装工程] TB487
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145