非线性包装系统跌落冲击动力学响应分析的NHB方法  被引量:6

The NHB Method for Dropping Shock Dynamic Response Analysis in Nonlinear Packaging Systems

在线阅读下载全文

作  者:杜兴丹 陈安军 DU Xingdan;CHEN Anjun(School Mechanical Engineering,Jiangnan University,Wuxi 214122,Jiangsu China;China National Control and Testing Center for Packaging Quality,Wuxi 214122,Jiangsu China)

机构地区:[1]江南大学机械工程学院,江苏无锡214122 [2]国家轻工业包装制品质量监督检测中心,江苏无锡214122

出  处:《噪声与振动控制》2018年第6期48-51,71,共5页Noise and Vibration Control

摘  要:以3次非线性缓冲包装系统为研究对象,建立系统跌落冲击动力学方程,应用牛顿谐波平衡法(NHB)获得系统跌落冲击动力学响应的1阶、2阶近似解析解,并获得产品位移、加速度响应最大值以及跌落冲击时间等重要参数的解析表达式。与龙格-库塔(R-K)数值分析解和变分迭代(VIM)近似解比较,算例分析表明,牛顿谐波平衡法2阶近似解与龙格-库塔数值解最为接近,随跌落高度增加2阶近似解精度有所降低,但相对误差控制在2.5%以内,能满足工程设计需要。研究结果可为非线性包装系统跌落冲击响应分析提供一种新的高精度近似分析方法。The dropping shock dynamic equations of a cubic nonlinear cushion packaging system are established. The Newton-harmonic balancing (NHB) method is used to obtain the first-order and second-order approximate analytical solutions of dropping shock dynamic response of the system. And the analytical expressions of some important parameters, including the maximum displacement, maximum acceleration of the products and the dropping shock duration, are obtained. The results are compared with those of Runge-Kutta method and variational iteration method (VIM). The example analysis shows that the second order approximate solution of the Newton-haxmonic balancing method is closest to that of Runge- Kutta method. The precision of the second-order approximate solution decreases with the drop height increase, but the relative error is controlled within 2.5 %, which can meet the engineering design requirements. The research results provide a new high-precision approximate analysis method for the dropping shock response analysis of nonlinear packaging systems.

关 键 词:振动与波 牛顿谐波平衡 非线性 位移最大值 加速度最大值 跌落冲击时间 

分 类 号:TB485.3[一般工业技术—包装工程] TB487

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象