检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学计算机科学与工程系,黑龙江哈尔滨150001
出 处:《软件学报》2002年第9期1773-1778,共6页Journal of Software
基 金:国家自然科学基金~~
摘 要:在多机器人环境中,由于每个机器人动作选择的重叠现象,让机器人之间的协作变得很差.提出了一个方法用于确定动作选择级别.在此基础上,可以很好地控制多机器人的协作行为的获取.首先,定义了用于动作选择级优先级的8个级别,这8个级别相应的映射到8个动作子空间.然后,利用局部势场法,每个机器人的动作选择优先级被计算出来,并且因此,每个机器人获得了各自需要搜索的动作子空间.在动作子空间中,每个机器人利用加强学习方法来选择一个适当的动作.最终,把该方法用于机器人足球比赛的机器人局部协作训练中.试验的效果在仿真和实际比赛中得到了证实.In a multi robots environment, the overlap of actions selected by each robot makes the acquisition of cooperation behaviors less efficient. In this paper an approach is proposed to determine the action selection priority level based on which the cooperative behaviors can be readily controlled. First, eight levels are defined for the action selection priority, which can be correspondingly mapped to eight subspaces of actions. Second, using the local potential field method, the action selection priority level for each robot is calculated and thus its action subspace is obtained. Then, Reinforcement learning (RL) is utilized to choose a proper action for each robot in its action subspace. Finally, the proposed method has been implemented in a soccer game and the high efficiency of the proposed scheme was verified by the result of both the computer simulation and the real experiments.
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31