检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨师范大学阿城学院,黑龙江阿城150301
出 处:《黑龙江大学自然科学学报》2002年第3期27-29,共3页Journal of Natural Science of Heilongjiang University
摘 要:[1]借助有限群的Sylow子群的正规性给出π-拟幂零群的概念,并利用子群的π-拟正规性得到π-拟幂零群的性质及几个充分条件,也探讨了π-拟幂零群与超可解群的关系。主要利用π-拟幂零群的极小子群及其它子群所具有的π’-拟正规性以及内超可解群的性质,假设π-拟幂零群不是超可解群,则它是内超可解群,从而得到矛盾。利用这种极小反例的方法给出超可解群的几个充分条件。Based on normality of Sylow subgroups of finite group, in [1] the author gave the definition of π-quasinilpotent group, and obtained the properties and some sufficient conditions with π -quasinormolity of its subgroups, and discussed the relationship between π - quasinilpotent group and supersolvable group. Using π-quasinonnality of minimal subgroups and other subgroups in addition to the properties of inner - supersolvable group, the authors suppose if π - quasinilpotent group isn't supersolvable, it is inner - supersolvable, which is contradictory. With this, some supersolvable group are obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15