检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张鹏 葛小青[1] ZHANG Peng;GE Xiaoqing(Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094 , P. R. China;University of Chinese Academy of Sciences, Beijing 100049 , P. R. China)
机构地区:[1]中国科学院遥感与数字地球研究所,北京100094 [2]中国科学院大学,北京100049
出 处:《重庆邮电大学学报(自然科学版)》2016年第4期518-524,共7页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
摘 要:Slope One协同过滤算法被广泛应用于个性化推荐系统中。标签是一种描述项目特性的重要形式,针对Slope One算法推荐精度不足的问题,将标签信息融合到Slope One算法当中。同时参考k近邻算法思想,选取阈值过滤后的k近邻项目参与平均评分偏差计算,提高计算效率的同时增加预测精度。使用评分相似度和标签相似度作为权重修正线性回归模型。通过线性加权融合预测结果,进一步提升推荐质量。将算法应用于Movie Lens数据集,与传统加权Slope One算法相比,平均绝对偏差下降4.8%,召回率和准确率分别提高32.1%和26.3%。Slope One Collaborative Filtering algorithm is widely used in personalized recommendation system. Label is an important form to describe the characteristics of the items. To overcome its deficiency in rating prediction accuracy, this paper proposes a new hybrid algorithm combined with tag information. With reference to the ^-nearest neighbor Collaborative Filtering algorithm, we select neighbors of the target item to participate in the calculation of the average rating deviation,which ensures computational efficiency and improves the prediction accuracy. The algorithm defines rating similarities and tag similarities as weight to revise the linear regression model. To achieve further improvement of the recommendation quality,the algorithm adopts a linear weighted fusion method to combine the results. Experimental results on the Movielens data sets indicated that, compared with the traditional weighted Slope One algorithm, mean average absolute error declined 4. 8 % ,while recall rate and precision rate respectively increased 32. 1% and 26. 3% .
关 键 词:协同过滤 推荐系统 标签相似度 K近邻 SLOPE One算法
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117