检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马媛[1] 冯全[1] 杨梅[1] 李妙祺[1] MA Yuan;FENG Quan;YANG Mei;LI Miaoqi(College of Engineering, Gansu Agricultural University, Lanzhou 730000, China)
出 处:《计算机工程与应用》2016年第15期158-161,共4页Computer Engineering and Applications
基 金:盛彤笙科技创新基金项目(No.GSAU-STS-1324);国家自然科学基金(No.61461005)
摘 要:在酿酒葡萄生长状态与病虫害自动监测中,需要在图像中检测出葡萄叶片,通过提取葡萄叶片图像的方向梯度直方图(HOG)特征投入到支持向量机(SVM)分类器中以实现对葡萄叶片的识别;结合多尺度目标定位和均值漂移算法还可以自动确定图像中葡萄叶片的位置。实验结果表明,使用线性核函数训练后的分类器对葡萄叶片和四种常见杂草的识别率达95.5%。该方法对光照和环境变化有较好的鲁棒性,自然条件下成像的叶片图像的葡萄叶片检出率达到了80%以上。For the purpose of automatic surveillance on wine grape in some aspects such as growth state, disease and insectpests, grape leaves should firstly be detected in an image. In this paper, a method is proposed in which Histogram of OrientedGradient(HOG)features of a leaf are extracted and a classifier trained by support vector machine is used to identifythe grape leaves in the images. The locations of the leaves in the image are determined by multi-scale object localizationand mean shift algorithm. The experiment results show that the recognition rate of grape leaves and four common weedleaves reaches 95.5% when using the classifier trained with linear kernel function. The proposed method is robust to varietyof illumination and environment. The detection rate of grape leaves of the images under natural conditions is over80% in experiment.
关 键 词:方向梯度直方图(HOG)特征 支持向量机 识别 均值漂移算法 定位 检测
分 类 号:S24[农业科学—农业电气化与自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185