检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李战明[1] 杨红红[2] LI Zhanming;YANG Honghong(College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China;Lanzhou University of Technology,Lanzhou 730050,China)
机构地区:[1]兰州理工大学电气工程与信息工程学院,甘肃兰州730050 [2]兰州理工大学,甘肃兰州730050
出 处:《现代电子技术》2016年第16期102-104,107,共4页Modern Electronics Technique
基 金:教育部博士点基金(20106201110003)
摘 要:针对车牌字符图像进行特征提取与识别算法的研究。使用BP神经网络识别算法建立车牌字符图像的识别。由于常规BP神经网络算法本身存在训练过程容易陷入局部最小值、收敛效率低以及网络结构参数不易确定等缺点。另外,BP网络结构参数的选取对算法的性能影响很大,而参数的选取通常是根据经验公式选取的,存在很大的随机性和盲目性,使算法的性能无法得到保证。因此该文使用收敛速度快、适用于全局搜索的PSO优化算法对BP神经网络算法的性能进行优化,研究一种双粒子群优化的改进BP神经网络算法。最后通过车牌识别实验对识别算法进行研究,结果表明,通过对神经网络算法进行改进,使用其建立汉字识别模型、字母识别模型以及混合识别模型的识别准确率均优于常规神经网络算法建立的模型,具有较好的识别性能。The feature extraction and recognition algorithm of license plate character image are studied. The BP neural net?work recognition algorithm is used to identify the license plate character image. Since the conventional BP neural network algo?rithm is easy to fall into local minimum value and low convergence efficiency,and difficult to determine the network structureparameters in training process,moreover,since the selection of BP network structure parameters has great influence on the per?formance of the algorithm,and the parameters selection is usually based on the empirical formula and has prodigious random?ness and blindness,the performance of the algorithm can’t be guaranteed. Therefore,the PSO algorithm is used to optimize theperformance of BP neural network algorithm,which has fast convergence rate and is suitable for global search. The improved BPneural network algorithm for the dual particle swarm optimization is studied. The recognition algorithm is studied with the experi?ment of license plate recognition. The results show that the recognition accuracy of Chinese characters recognition model,lettersrecognition model and mixed recognition model established by means of the improved neural network algorithm is superior to thatof the model established with conventional neural network algorithm,and the recognition algorithm has good recognition perfor?mance.
关 键 词:车牌字符识别 特征提取 神经网络 粒子群优化算法
分 类 号:TN926.34[电子电信—通信与信息系统] U495[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3