一种基于BP神经网络算法和低通滤波的水资源评估预测数学模型建模方法  被引量:2

A Method Based on Back Propagation Arithmetic and Low-pass Filter to Build the Evaluation and Prediction Mathematical Model for Water Resources

在线阅读下载全文

作  者:林炯[1] 余伟江[1] 余伟浩[2] LIN Jiong;YU Weijiang;YU Weihao(School of Physics and Communication Engineering,South China Normal University,Guangzhou 510006,Guangdong Province,China;School of Information and Optoelectronic Science and Engineering,South China Normal University,Guangzhou 510006,Guangdong Province,China)

机构地区:[1]华南师范大学物理与电信工程学院,广东广州510006 [2]华南师范大学信息光电子科技学院,广东广州510006

出  处:《天津科技》2016年第8期29-32,共4页Tianjin Science & Technology

摘  要:基于BP神经网络算法建立水资源评估数学模型。首先获得大量相关的评估指标,通过主成分分析法(PCA)剔除不重要指标。对于指标赋权,先用基于蒙特卡罗的层次分析法(AHP-MCA)初步给指标赋权,由于此法具有一定主观性,因此进一步采用BP神经网络算法对所赋权重进行训练调节,过程中需要一个标准比对物,最终得到符合实际情况的权重因子。在建立预测数学模型前,针对可能的突变输入数据,采用低通滤波器将突变高频数据过滤,增加模型适用性,最后通过灰色模型GM(1,1)建立预测模型。To build an evaluation mathematical model for water resources,original evaluation indicators were selected,unimportant indicators by Principal Component Analysis(PCA)were eliminated and ultimately independent and importantindicators were obtained,which actually carry all information of the original indicators.Then the Analytic Hierarchy Processbased on Monte Carlo Algorithm(AHP-MCA)was used to preliminarily give weights.As this method is subjective,it isnecessary to adjust the weights by Back Propagation Arithmetic(BP).Ultimately,reasonable and real weights were obtained.Before building the prediction model,Low-pass Filter was used to filer abnormal data,which will add adaptabilityof the model.Finally,the prediction model was established by Grey Model GM(1,1) .

关 键 词:数学模型 BP神经网络 权重 低通滤波 灰色模型 

分 类 号:O29[理学—应用数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象