Haar型LBP纹理特征的行人检测研究  被引量:5

Haar characteristics LBP text feature for pedestrian detection

在线阅读下载全文

作  者:周书仁[1,2] 王刚[1,2] 徐岳峰[1] 佘凯晟 ZHOU Shuren;WANG Gang;XU Yuefeng;SHE Kaisheng(School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114,China;Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha University of Science and Technology, Changsha 410114, China)

机构地区:[1]长沙理工大学计算机与通信工程学院,长沙410114 [2]长沙理工大学综合交通运输大数据智能处理湖南省重点实验室,长沙410114

出  处:《计算机工程与应用》2016年第21期175-179,共5页Computer Engineering and Applications

基  金:湖南省教育厅资助科研项目(No.13B132);湖南省大学生研究性学习和创新性实验计划基金资助项目(湘教通[2015]269号131);湖南省交通运输厅科技进步与创新项目(No.201334)

摘  要:针对行人检测中直接在灰度图像下提取局部二元模式(Local Binary Pattern,LBP)特征受噪声影响大导致检测率低的问题,提出了基于HSV颜色空间提取改进型Haar型LBP(IHLBP)特征的方法。首先将图像由RGB颜色空间转化到HVS颜色空间,然后对HSV图像的H、S、V空间分别提取IHLBP特征,最后将3个IHLBP特征归一化后串接为一个特征向量,得到最终的IHLBP特征。在INRIA Person数据集上采用支持向量机(Support Vector Machine,SVM)作为分类器进行测试。实验结果表明,该方法能有效地提高识别率,可达98.5%。相比于HOG特征、HPG-LBP特征和WLD-LBP特征具有更好的实验效果。In order to solve the problem of low detection rate caused by noise when directly extracting Local Binary Pattern (LBP)feature from gray images in pedestrian detection, a method extracting Improved Haar-like LBP(IHLBP)feature based on HSV color space is proposed. Firstly, images are converted from RGB space to HSV space. Secondly, IHLBP features are extracted from H, S, V channel respectively. Thirdly, the final IHLBP feature is obtained by normalizing and seriating three IHLBP characteristics acquired from second stage. Tests are conducted in INRIA Person dataset using Support Vector Machine(SVM)classifier. Experimental results show that this approach achieves higher recognition rate reaching up to 98.5% and has a better performance when compared to HOG, HPG-LBP, WLD-LBP feature.

关 键 词:行人检测 HSV颜色空间 特征提取 改进型Haar型局部二元模式(IHLBP)特征 支持向量机 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象